### 1. Data about the study programme

| 1.1 Higher education institution   | "Transilvania" University of Brasov                             |
|------------------------------------|-----------------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                                          |
| 1.3 Department                     | Mechanical Engineering                                          |
| 1.4 Field of study <sup>1)</sup>   | Engineering science/Mechanical Engineering                      |
| 1.5 Study level <sup>2)</sup>      | Master                                                          |
| 1.6 Study programme/ Qualification | Engineering Sciences / Mechanical Engineering                   |
|                                    | Practical integrated methods for propulsion systems engineering |

#### 2. Data about the course

| 2.1 Name of cour                          | se |              | Measurement Techniques used in Manufacturing and Quality Assur |                     |   |            | rance                         |     |
|-------------------------------------------|----|--------------|----------------------------------------------------------------|---------------------|---|------------|-------------------------------|-----|
| 2.2 Course convenor Associ                |    |              | Associate Prof. PhD, dipl. Eng. MIHAIL Laurențiu - Aurel       |                     |   |            |                               |     |
| 2.3 Seminar/ laboratory/ project convenor |    |              | Associate Prof. PhD, dipl. Eng. MIHAIL Laurențiu - Aurel       |                     |   |            |                               |     |
| 2.4 Study year                            | 1  | 2.5 Semester |                                                                | 2.6 Evaluation type | Ε | 2.7 Course | Content <sup>3)</sup>         | PC  |
|                                           |    |              |                                                                |                     |   | status     | Attendance type <sup>4)</sup> | CPC |

# 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 2  | out of which: 3.2 lecture | 1  | 3.3 seminar/ laboratory/ project | 0/1/0  |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|----------------------------------|--------|
| 3.4 Total number of hours in                                                                | 28 | out of which: 3.5 lecture | 14 | 3.6 seminar/ laboratory/ project | 0/14/0 |
| the curriculum                                                                              |    |                           |    |                                  |        |
| Time allocation                                                                             |    |                           |    |                                  |        |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |                                  |        |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |                                  |        |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    |                                  |        |
| Tutorial                                                                                    |    |                           |    |                                  |        |
| Examinations                                                                                |    |                           |    |                                  |        |
| Other activities                                                                            |    |                           |    |                                  | 0      |

| 3.7 Total number of hours of student activity | 83  |
|-----------------------------------------------|-----|
| 3.8 Total number per semester                 | 125 |
| 3.9 Number of credits <sup>5)</sup>           | 5   |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Technical Drawing interpretation (GD&T)       |
|-------------------------|-----------------------------------------------|
| 4.2 competences-related | Engineering (Mechanical, Manufacturing, etc.) |

# 5. Conditions (if applicable)

| 5.1 for course development         | • | Video p | roje | ctor |      |    |          |             |           |            |
|------------------------------------|---|---------|------|------|------|----|----------|-------------|-----------|------------|
| 5.2 for seminar/laboratory/project | • | Access  | at   | the  | ICDT | L3 | Mitutoyo | dimensional | metrology | laboratory |
| development                        |   | invento | ry   |      |      |    |          |             |           |            |

### 6. Specific competences and learning outcomes

| Professional | competences |
|--------------|-------------|

- C3. Coordination of the quality management system and project management
  - L.O.3.1. The graduate can plan, coordinate and direct all production activities in order to ensure product quality;
  - L.O.3.2. The graduate can carry out activities related to quality control by performing inspections and tests of services, processes or products;

- CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering L.O.1.1 The graduate can adequately use specialized information in professional communication.
- CT2. Autonomy and critical thinking
  - L.O.2.1 The graduate develops his own way of solving a task, working motivated, with little or no supervision.
  - L.O.2.2 The graduate has autonomy in making technical decisions or those related to the management of design activities
  - L.O.2.3 The graduate has the ability to ensure the quality of a mechanical structure and mechanical product/system.
  - L.O.2.4 The graduate can develop efficient and responsible work strategies, applying the principles, norms and values of the code of professional ethics.
  - L.O.2.6 The graduate has the ability to objectively self-assess the need for lifelong training, the use of information and communication in an international language for the purpose of insertion into the labor market and continuous adaptation to its requirements.
- CT3. Preparing and presenting reports describing the results and processes of scientific or technical research.

  L.O.3.1 The graduate can write and present technical reports for the semester practice and/or for the discipline projects, going through all the necessary stages, from documentation, idea/concept, modeling/simulation to testing/validation.
  - L.O.3.2 The graduate understands and ensures the fulfillment of the norms of ethics and academic integrity in writing reports.
  - L.O.3.3 The graduate works independently for the purpose of scientific information and to obtain the data necessary to solve the project topics; identify own sources of documentation.
  - L.O.3.4 The graduate has the ability for interpersonal communication, professional counseling and assuming leadership roles in the work group.

# 7. Course objectives (resulting from the specific competences to be acquired)

| resulting from the specific competences to be acquired                                            |
|---------------------------------------------------------------------------------------------------|
| Providing the theoretical and practical body of knowledge founding the coordinate metrology       |
| and quality assurance, targeting the coordinate measuring systems (tactile, optical, laser) and   |
| the main software environments for conducting it and for quality assurance; students initiation   |
| on the use of the coordinate measuring equipment for dimensional metrology, quality               |
| assurance software for data management and inclusion it in the quality management system.         |
| • To integrate the dimensional quality assessment on quality assurance and quality                |
| management systems concepts                                                                       |
| • To review the GD&T main details, as a fundament of the dimensional metrology and quality        |
| assurance                                                                                         |
| • To describe the structure and the functioning of the hardware and software coordinate           |
| measuring equipment (tactile, optical, laser) on 1, 2 and 3 dimensions measurement                |
| • To describe the role and the functioning of the hardware and software components of the         |
| measuring equipment                                                                               |
| To interpret ones of the elements of the coordinate measuring equipment part programs             |
| • To start to perceive the role of the quality assurance within the measurement cycle and quality |
| management                                                                                        |
| To perceive accordingly one of the quality standards regarding the quality assurance and          |
| quality management at plant and laboratory levels                                                 |
|                                                                                                   |

#### 8. Content

| 8.1 Course                                         | Teaching methods        | Number of hours | Remarks |
|----------------------------------------------------|-------------------------|-----------------|---------|
| 1. Dimensional metrology                           | Presentment/Explanation | 2h              | N.A.    |
| 2. Geometrical Dimension & Tolerancing             | Video – projector       | 2h              | N.A.    |
| 3. Quality assurance and quality management        | Presentment/Explanation | 2h              | N.A.    |
| 4. Measurement small tools and data management     | Video – projector       | 2h              | N.A.    |
| 5. Optical measurement                             | Presentment/Explanation | 2h              | N.A.    |
| 6. Profile (micro and macro) and form measurement  | Video – projector       | 2h              | N.A.    |
| 7. Dimensional coordinate measurement – Coordinate | Presentment/Explanation | 2h              | N.A.    |
| Measuring Machines's architectures, probes,        |                         |                 |         |
| auxiliaries                                        |                         |                 |         |
| 8. Dimensional coordinate measurement – software   | Video – projector       | 2h              | N.A.    |
| 9. Quality assurance with Measurlink software      | Presentment/Explanation | 2h              | N.A.    |
| 10. Quality assurance with Q-Das software          | Video – projector       | 2h              | N.A.    |
| 11. Quality assurance with Minitab software        | Presentment/Explanation | 2h              | N.A.    |
| 12. Dimensional scanning metrology - scanners      | Video – projector       | 2h              | N.A.    |
| software                                           |                         |                 |         |
| 13. Machining process online monitorization        | Presentment/Explanation | 2h              | N.A.    |
| 14. Knowledge refreshment                          | Presentment             | 2h              | N.A.    |

### Bibliography

- 1. <u>www.mitutoyo.ro</u>
- 2. <a href="https://www.zeiss.com/metrology/home.html">https://www.zeiss.com/metrology/home.html</a>
- 3. <a href="http://gom.com/index.html">http://gom.com/index.html</a>
- 4. <a href="https://support.gom.com/">https://support.gom.com/</a>
- 5. <a href="http://www.hexagonmetrology.eu">http://www.hexagonmetrology.eu</a>
- 6. <a href="http://www.measurlink.com">http://www.measurlink.com</a>
- 7. <a href="http://www.q-das.com/en/">http://www.q-das.com/en/</a>
- 8. <a href="http://www.minitab.com/en-us/">http://www.minitab.com/en-us/</a>
- 9. <a href="http://www.bipm.org/en/about-us/">http://www.bipm.org/en/about-us/</a>
- 10. http://www.kistler.com
- 11. Metrologie in coordinate note de curs autor Mihail Laurentiu (Coordinate metrology course notes author Mihail Laurentiu)

| 8.2 Seminar/laboratory/project                           | Teaching-learning methods | Number of hours | Remarks |
|----------------------------------------------------------|---------------------------|-----------------|---------|
| 1. Laboratory OHSAS, general presentation, inventory     | Presentment               | 2h              | N.A.    |
| 2. Measurement small tools, Linear Height, Roughness     | Presentment / Debate /    | 2h              | N.A.    |
| measurement (Mitutoyo calipers, micrometers,             | Practical exercises       |                 |         |
| indicators, granite plate, auxiliaries, air conditioned, |                           |                 |         |
| laptop, Measurlink software, Mitutoyo linear height,     |                           |                 |         |
| Mitutoyo roughness measurement equipment                 |                           |                 |         |
| 3. Measurement techniques - Quick Image (Quick           | Presentment / Debate /    | 2h              | N.A.    |
| Image, auxiliaries, air conditioned, laptop, Measurlink  | Practical exercises       |                 |         |
| software)                                                |                           |                 |         |
| 4. Measurement techniques - CMM Euro C 544 (CMM          | Presentment / Debate /    | 2h              | N.A.    |
| Euro C 544, KOMEG device, auxiliaries, air conditioned,  | Practical exercises       |                 |         |
| laptop, MCOSMOS software, Measurlink software)           |                           |                 |         |
| 5. Quality assurance with Measurlink - case studies      | Presentment / Debate /    | 2h              | N.A.    |
| (Measurlink software, laptop, Video – projector)         | Practical exercises       |                 |         |

| 6. Quality assurance with Q-Das - case studies (Q-Das Software DESTRA configuration, laptop, Video – | Presentment / Debate /<br>Practical exercises | 2h | N.A. |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|----|------|
| projector)                                                                                           |                                               |    |      |
| 7. Online quality process monitorization with cutting                                                | Presentment / Debate /                        | 2h | N.A. |
| force and cutting torque measurement (Kistler,                                                       | Practical exercises                           |    |      |
| Dynoware, Minitab)                                                                                   |                                               |    |      |

- 1. QI Handbook and QIPack Help
- 2. LH Handbook
- 3. CMM Euro C 544 Handbook and MCOSMOS Help
- 4. www.mitutoyo.ro
- 5. <a href="https://www.zeiss.com/metrology/home.html">https://www.zeiss.com/metrology/home.html</a>
- 6. http://gom.com/index.html
- 7. <a href="https://support.gom.com/">https://support.gom.com/</a>
- 8. http://www.hexagonmetrology.eu
- 9. http://www.measurlink.com
- 10. <a href="http://www.q-das.com/en/">http://www.q-das.com/en/</a>
- 11. <a href="http://www.minitab.com/en-us/">http://www.minitab.com/en-us/</a>
- 12. <a href="https://play.google.com/store/apps/details?id=de.zeiss.imt.gdt">https://play.google.com/store/apps/details?id=de.zeiss.imt.gdt</a>

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The incidence of the coordinate metrology on the automotive manufacturing is a very present one within the geographic area targeted by the study programs from our university. Also, the use of the innovative measurement technologies and their software (e.g. MCOSMOS, QIPACK, CALYPSO, GOM INSPECT, PC-DMIS) and the quality assurance organized according innovative approaches (e.g. vs. IATF 16949 and automotive customer quality specific requirements), and the main software for this scope (e.g. Q-DAS, MEASURLINK, MINITAB). The knowledge of the theoretical principles on the coordinate metrology is comprehensive for any type of applications, specifics to each measurement equipment, for any type of measurement surface. The course does not have as target or intent, neither the necessary accreditation for being a substitute to one of the market learning approaches (e.g. Aukom, Eukom, Mitutoyo Information Center of Metrology, Zeiss Academy).

#### 10. Evaluation

| Activity type | 10.1 Evaluation criteria                         | 10.2 Evaluation methods | 10.3 Percentage    |
|---------------|--------------------------------------------------|-------------------------|--------------------|
|               |                                                  |                         | of the final grade |
| 10.4 Course   | The definition of the concepts quality assurance | Written exam            | 5 %                |
|               | and quality management                           |                         |                    |
|               | Small measurement instruments                    | Written exam            | 10 %               |
|               | Profile measurement                              | Written exam            | 10 %               |
|               | Roughness measurements                           | Written exam            | 10 %               |
|               | Quality assurance software - Measurlink          | Written exam            | 10 %               |
|               | Quality assurance software – Q-DAS               | Written exam            | 10 %               |
|               | Quality assurance software - Minitab             | Written exam            | 10 %               |
|               | Scanning technologies for metrology              | Written exam            | 10 %               |
| 10.5 Seminar/ | Practical application for quality assurance      | Practical exam          | 15 %               |
| laboratory/   |                                                  | Assessment during the   |                    |
| project       |                                                  | semester time interval  |                    |

#### 10.6 Minimal performance standard

- The identification of the main presented measurement instruments and their role
- Base knowledge regarding the use and role of the main quality assurance software

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024

Prof.dr.ing. Ioan Călin, ROȘCA

Dean

Conf.dr.ing. Laurențiu - Aurel, MIHAIL

Course holder

Prof.dr.ing. Maria Luminița, SCUTARU

**Head of Department** 

Conf.dr.ing. Laurențiu - Aurel, MIHAIL

Holder of seminar/laboratory/project

#### Note:

- <sup>1)</sup> Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brasov                              |
|------------------------------------|----------------------------------------------------------------|
| 1.2 Faculty                        | Faculty of Mechanical Engineering                              |
| 1.3 Department                     | Mechanical Engineering                                         |
| 1.4 Field of study <sup>1)</sup>   | Engineering sciences                                           |
| 1.5 Study level <sup>2)</sup>      | Master degree                                                  |
| 1.6 Study programme/ Qualification | Practical methods integrated in propulsion systems engineering |

#### 2. Data about the course

| 2.1 Name of cour                          | course General economics |              |                          |                             |   |            |                       |     |
|-------------------------------------------|--------------------------|--------------|--------------------------|-----------------------------|---|------------|-----------------------|-----|
| 2.2 Course convenor                       |                          |              | Con                      | Conf.dr. Raluca Dania Todor |   |            |                       |     |
| 2.3 Seminar/ laboratory/ project convenor |                          | Con          | ıf.dr. Raluca Dania Todo | r                           |   |            |                       |     |
| 2.4 Study year                            | 1                        | 2.5 Semester | 1                        | 2.6 Evaluation type         | Е | 2.7 Course | Content <sup>3)</sup> | SC  |
|                                           |                          |              |                          |                             |   | status     | Attendance            | CPC |
|                                           |                          |              |                          |                             |   |            | type <sup>4)</sup>    |     |

## 3. Total estimated time (hours of teaching activities per semester)

|                                                                                             |    | _                         |    |                                  |        |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|----------------------------------|--------|
| 3.1 Number of hours per week                                                                | 2  | out of which: 3.2 lecture | 1  | 3.3 seminar/ laboratory/ project | 1/0/0  |
| 3.4 Total number of hours in                                                                | 28 | out of which: 3.5 lecture | 14 | 3.6 seminar/ laboratory/ project | 14/0/0 |
| the curriculum                                                                              |    |                           |    |                                  |        |
| Time allocation                                                                             |    |                           |    |                                  | hours  |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |                                  | 18     |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |                                  | 11     |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    |                                  | 14     |
| Tutorial                                                                                    |    |                           |    |                                  | 2      |
| Examinations                                                                                |    |                           |    | 2                                |        |
| Other activities                                                                            |    |                           |    | 18                               |        |

| 3.7 Total number of hours of student activity |  |
|-----------------------------------------------|--|
| 3.8 Total number per semester                 |  |
| 3.9 Number of credits <sup>5)</sup>           |  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  |  |
|-------------------------|--|
| 4.2 competences-related |  |

### 5. Conditions (if applicable)

| 5.1 for course development                      |  |
|-------------------------------------------------|--|
| 5.2 for seminar/ laboratory/project development |  |

### 6. Specific competences and learning outcomes

Cp1. The foundation of business strategies, the development of marketing plans within a business.

:ompetences Professional

- L.O. 1.1 The graduate explains how to substantiate the decisions, effects and objectives pursued, for their adoption and implementation in an effective and responsible manner.
- L.O.1.2. The graduate chooses optimal decision options under the conditions of some probabilistic universes, but in a professional risk estimation environment.
- L.O. 1.3. The graduate argues the decisions made in the business environment and the techniques used in running the
- L.O. 1.4. The graduate proposes management systems for companies involved in business.

# Transversal competences

- Ct1 Application of professional ethics norms and values for decision-making and independent or group performance of complex tasks at work.
  - L.O. 1.1 The graduate is able to design a real-time solution scheme for a problem at work and undertake its implementation, respecting the rules of professional ethics.
  - Ct2. Assuming the need for continuous training to create the prerequisites for career progress and adaptation of one's own professional and managerial skills to the dynamics of the economic environment.
  - L.O.2.1. The graduate is able to develop and present a personal continuous training plan to ensure the development of professional skills.

# 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course objective | Understanding the basic concepts of the discipline |
|------------------------------|----------------------------------------------------|
| 7.2 Specific objectives      | Working with the basic concepts of the discipline  |

#### 8. Content

| 8.1 Course                                  | Teaching methods                              | No.hours | Remarks |
|---------------------------------------------|-----------------------------------------------|----------|---------|
| Introduction                                | Interactive presentations based on slides and | 2        |         |
|                                             | group discussions                             |          |         |
| Analysis of the business microenvironment   | Interactive presentations based on slides and | 2        |         |
|                                             | group discussions                             |          |         |
| Analysis of the business macro environment  | Interactive presentations based on slides and | 2        |         |
|                                             | group discussions                             |          |         |
| Particularities in the product strategy for | Interactive presentations based on slides and | 2        |         |
| industrial goods                            | group discussions                             |          |         |
| Product strategies used in B2B markets      | Interactive presentations based on slides and | 2        |         |
|                                             | group discussions                             |          |         |
| Distribution strategies used in B2B markets | Interactive presentations based on slides and | 2        |         |
|                                             | group discussions                             |          |         |
| Promotion strategies used in B2B markets    | Interactive presentations based on slides and | 2        |         |
|                                             | group discussions                             |          |         |

#### Bibliography

- 1. Parta Dasgupta (2020)- "Economie- o foarte scurta introducere", Edituta Litera.
- 2. N.Gregory Monkiw (2015)- "Principles of Economics", Ed. Cengage.
- 3. Constantin Daniel Avram(2012)- "Economie generala", Ed. Universitaria Craiova

| 8.2 Seminar/ laboratory/ project             | Teaching-learning methods                     | No.hours | Remarks |
|----------------------------------------------|-----------------------------------------------|----------|---------|
| Introduction to basic economic concepts      | Interactive presentation and group            | 2        |         |
|                                              | discussions.                                  |          |         |
| Product levels and added value               | Case studies and group exercises to identify  | 2        |         |
|                                              | the levels of a product.                      |          |         |
| Market research methods                      | Theoretical exposure and practical workshop   | 2        |         |
|                                              | where participants develop a simple market    |          |         |
|                                              | research plan                                 |          |         |
| Defining the target market                   | Applied exercises for identifying the target  | 2        |         |
|                                              | market according to a case study.             |          |         |
| Unique Selling Proposition (USP) formulation | Theoretical exposition and practical exercise | 2        |         |
| - Proposed value                             | of formulating a USP for a specific product.  |          |         |

| PEST analysis                     | Theoretical exposure with the activity of      | 2 |  |
|-----------------------------------|------------------------------------------------|---|--|
|                                   | performing a PEST analysis applied to an       |   |  |
|                                   | industry example.                              |   |  |
| Creation of promotional materials | Theoretical exposition with                    | 2 |  |
|                                   | practical activity where participants design a |   |  |
|                                   | simple promotional material (poster, brochure, |   |  |
|                                   | social media post).                            |   |  |

- 1. Parta Dasgupta (2020)- "Economie- o foarte scurta introducere", Edituta Litera.
- 2. N.Gregory Monkiw (2015)- "Principles of Economics", Ed. Cengage.
- 3. Constantin Daniel Avram(2012)- "Economie generala", Ed. Universitaria Craiova

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Preparing future specialists in the field of engineering sciences in order to understand the basic economic principles related to profitability

#### 10. Evaluation

| Activity type             | 10.1 Evaluation criteria                 | 10.2 Evaluation methods | 10.3 Percentage    |
|---------------------------|------------------------------------------|-------------------------|--------------------|
|                           |                                          |                         | of the final grade |
| 10.4 Course               | The practical application of the studied | Oral exam               | 50%                |
|                           | concepts                                 |                         |                    |
| 10.5 Seminar/ laboratory/ | Project                                  | Presentation            | 50%                |
| project                   |                                          |                         |                    |

#### 10.6 Minimal performance standard

- Operation with specific concepts
- Critical evaluation of emerging situations
- Preparation of seminar projects

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

**Head of Department** 

Conf.dr. Raluca Dania TODOR

Conf.dr. Raluca Dania TODOR

Course holder

Holder of seminar/ laboratory/ project

#### Note:

- 1) Field of study select one of the following options: Bachelor / Mast
- 2) er / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 3) Study level choose from among: Bachelor / Master / Doctorat;

- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- 6) One credit is the equivalent of 25 study hours (teaching activities and individual study).

# 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                               |
|------------------------------------|-----------------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                                          |
| 1.3 Department                     | Mechanical Engineering                                          |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                                          |
| 1.5 Study level <sup>2)</sup>      | Master                                                          |
| 1.6 Study programme/ Qualification | Practical integrated methods for propulsion systems engineering |

# 2. Data about the course

| 2.1 Name of cour                                                | ame of course Mechanics of Materials |              |     |                        |       |                |                               |     |
|-----------------------------------------------------------------|--------------------------------------|--------------|-----|------------------------|-------|----------------|-------------------------------|-----|
| 2.2 Course convenor Prof.dr.eng. Teodorescu-Drăghicescu Horațiu |                                      |              |     |                        |       |                |                               |     |
| 2.3 Laboratory convenor                                         |                                      |              | Pro | f.dr.eng. Teodorescu-[ | Drăgh | icescu Horațiu |                               |     |
| 2.4 Study year                                                  | -1                                   | 2.5 Semester | -   | 2.6 Evaluation type    | Ε     | 2.7 Course     | Content <sup>3)</sup>         | SC  |
|                                                                 |                                      |              |     |                        |       | status         | Attendance type <sup>4)</sup> | CPC |

# 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 3                               | out of which: 3.2 lecture | 2  | 3.3 laboratory                   | 1     |
|---------------------------------------------------------------------------------------------|---------------------------------|---------------------------|----|----------------------------------|-------|
| 3.4 Total number of hours in                                                                | 3.4 Total number of hours in 42 |                           | 28 | 3.6 seminar/ laboratory/ project | 14    |
| the curriculum                                                                              |                                 |                           |    |                                  |       |
| Time allocation                                                                             |                                 |                           |    |                                  | hours |
| Study of textbooks, course support, bibliography and notes                                  |                                 |                           |    |                                  | 23    |
| Additional documentation in libraries, specialized electronic platforms, and field research |                                 |                           |    |                                  | 28    |
| Preparation of laboratories                                                                 |                                 |                           |    |                                  | 24    |
| Tutorial                                                                                    |                                 |                           |    |                                  | 6     |
| Examinations                                                                                |                                 |                           |    |                                  | 2     |
| Other activities                                                                            |                                 |                           |    |                                  |       |

| 3.7 Total number of hours of student activity |     |  |  |
|-----------------------------------------------|-----|--|--|
| 3.8 Total number per semester                 | 125 |  |  |
| 3.9 Number of credits <sup>5)</sup>           | 5   |  |  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Basic knowledge: mechanics, strength of materials, experimental methods in         |  |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                         | mechanical engineering, propulsion systems, technical drawing                      |  |  |  |  |  |  |
| 4.2 competences-related | Specific knowledges and skills in Mechanical Engineering, Aerospatial Engineering, |  |  |  |  |  |  |
|                         | Automotive Engineering, Mechatronics and Robotics, Electrical Engineering,         |  |  |  |  |  |  |
|                         | Systems Engineering, Computer and Information Technology, Informatics              |  |  |  |  |  |  |

# 5. Conditions (if applicable)

| 5.1 for course development   | Course room with video-projector, white board                                      |
|------------------------------|------------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | • System of optical analysis of 3D deformations for materials and components using |
| project development          | DIC method (Digital Image Correlation), GOM Corelate Pro software                  |
|                              | • LS100 Plus; LR5K Plus; Texture Analyser universal materials testing machines,    |
|                              | Nexygen Plus software                                                              |

#### 6. Specific competences and learning outcomes

# Cp1. Ability to develop products and defining the selection criteria of design solutions for propulsion systems

- **L.O.2.1** The graduate may concepts sketches and design elements necessary to elaborate and comunicate the design concepts
- L.O. 2.2 The graduate may analyses the principles that have to be used in developing technical projects
- **L.O.2.3** The graduate may uses the technical documentation in technical process in general and, particularly, to accomplishment the propulsion systems

# Cp2. Ability to apply the simulation and testing methods for propulsion systems and using the specialized design programmes (CAD/CAE)

- **L.O.2.1** The graduate may simulates the behaviour of propulsion systems models on specialized software basis
- **L.O.2.2** The graduate may elaborates testing protocols and analysis the collected data during testing to formulate conclusions and solutions
- **L.O.2.3** The graduate may designs and accomplishes prototypes to evaluate the tests of propulsion equipments
- **L.O.2.4** The graduate may uses assisted engineering software specific to the design of propulsion systems (dedicate software for CAE)
- L.O.2.5 The graduate may uses computer assisted design systems (dedicated software CAD)

# Ct1. Defining and/or using concepts, theories and scientific methods in the field of Mechanical Engineering

- **L.O.1.1** The graduate is able to use properly the speciality information in proffesional communication
- **L.O. 1.2** The graduate is able to apply the earned practical and theoretical knowledges, the methods and terminology in the field of Mechanical Engineering
- **L.O.2.3** The graduate has the ability to coordinate conception activities, calculus and design of a propulsion/mechanical system

#### Ct2. Autonomy and critical thinking

- **L.O.2.1** The graduate is able to develop his own way to resolve a task, working motivated, with little or no guidance
- **L.O. 2.2** The graduate has autonomy in taking technical decisions or those regarding the management of design activities
- **L.O.2.3** The graduate is able to ensure the quality of a mechanical structure or of a product/mechanical system
- **L.O.2.4** The graduate is able to elaborate responsible and efficient working strategies, with the application of professional etiq code values, norms and principles
- **L.O.2.5** The graduate has the capacity of objective self evaluation of need of formation during the whole life, using information and communication in a foreign language with the purpose of insertion in the working market and continuous adapting to its requirements

#### 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course objective | Development of technical and analytical competencies in the field of the<br>mechanics of composite materials |
|------------------------------|--------------------------------------------------------------------------------------------------------------|
| 7.2 Specific objectives      |                                                                                                              |

#### 8. Content

Professional competences

Transversal competences

| 8.1 Course                                 | Teaching methods                   | No. hours | Remarks |
|--------------------------------------------|------------------------------------|-----------|---------|
| Introduction in the mechanics of composite | Classic, interactive, explanation, | 2         |         |
| materials                                  | demonstration, problem formulation |           |         |
| Mechanical particularities of lamina       | Classic, interactive, explanation, | 4         |         |
|                                            | demonstration, problem formulation |           |         |

| Mechanical particularities of composite laminate | Classic, interactive, explanation, | 4 |  |
|--------------------------------------------------|------------------------------------|---|--|
|                                                  | demonstration, problem formulation |   |  |
| Standardization and testing methods of polymer   | Classic, interactive, explanation, | 4 |  |
| matrix composites                                | demonstration, problem formulation |   |  |
| Materials testing equipments and data analysis   | Classic, interactive, explanation, | 2 |  |
| software                                         | demonstration, problem formulation |   |  |
| System for optical analysis of 3D deformations   | Classic, interactive, explanation, | 4 |  |
| for materials and components using the DIC       | demonstration, problem formulation |   |  |
| method (Digital Image Correlation)               |                                    |   |  |
| Accomplishment of specimens from various         | Classic, interactive, explanation, | 4 |  |
| composite structures                             | demonstration, problem formulation |   |  |
| Determination of mechanical properties of        | Classic, interactive, explanation, | 4 |  |
| various composite structures                     | demonstration, problem formulation |   |  |

#### References

- 1. Gheorghiu, H., Hadăr, A., Constantin, N., Analiza structurilor din materiale izotrope și anizotrope, Ed. Printech, București, 1998
- 2. Teodorescu, H., Fundamentele și mecanica materialelor compozite polimerice, Ed. Universității Transilvania din Brașov, ISBN 978-635-878-4, 2007
- 3. Scutaru, M.L., Teodorescu-Drăghicescu, H., Vlase, S., Mecanică tehnică, Infomarket, ISBN 978-973-1747-15-6, 2009
- 4. Teodorescu-Drăghicescu, H., Mecanică experimentală, Ed. Universității Transilvania din Brașov, ISBN 978-606-19-0528-7, 2015
- 5. <u>www.gom.com</u>

| 31 <u>tttttigornicorni</u>                |                                           |           |         |
|-------------------------------------------|-------------------------------------------|-----------|---------|
| 8.2 Laboratory                            | Teaching-learning methods                 | No. hours | Remarks |
| Presentation of materials testing         | Classic, interactive, explanation,        | 2         |         |
| equipments and data analysis software     | demonstration, problem formulation        |           |         |
|                                           | System for optical analysis of 3D         |           |         |
|                                           | deformations for materials and components |           |         |
|                                           | using the DIC method (Digital Image       |           |         |
|                                           | Correlation)                              |           |         |
| Strength and rigidity evaluation of       | Classic, interactive, explanation,        | 4         |         |
| composite materials subjected to tensile, | demonstration, problem formulation        |           |         |
| from experimental data sets. Training GOM |                                           |           |         |
| Correlate                                 |                                           |           |         |
| Strength and rigidity evaluation of       | Classic, interactive, explanation,        | 4         |         |
| composite materials subjected to bending, | demonstration, problem formulation        |           |         |
| from experimental data sets. Training GOM |                                           |           |         |
| Correlate                                 |                                           |           |         |
| Strength and rigidity evaluation of       | Classic, interactive, explanation,        | 4         |         |
| composite materials subjected to          | demonstration, problem formulation        |           |         |
| compression, from experimental data sets. |                                           |           |         |
| Training GOM Correlate                    |                                           |           |         |

#### References

- 1. Gheorghiu, H., Hadăr, A., Constantin, N., Analiza structurilor din materiale izotrope și anizotrope, Ed. Printech, București, 1998
- 2. Teodorescu, H., Fundamentele și mecanica materialelor compozite polimerice, Ed. Universității Transilvania din Brașov, ISBN 978-635-878-4, 2007
- 3. Scutaru, M.L., Teodorescu-Drăghicescu, H., Vlase, S., Mecanică tehnică, Infomarket, ISBN 978-973-1747-15-

6, 2009

- 4. Teodorescu-Drăghicescu, H., Mecanică experimentală, Ed. Universității Transilvania din Brașov, ISBN 978-606-19-0528-7, 2015
- 5. www.gom.com

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

#### 10. Evaluation

| Activity type   | 10.1 Evaluation criteria                        | 10.2 Evaluation methods | 10.3 Percentage    |  |  |
|-----------------|-------------------------------------------------|-------------------------|--------------------|--|--|
| , ,,            |                                                 |                         | of the final grade |  |  |
| 10.4 Course     | Properly description of an experimental method  |                         |                    |  |  |
|                 | from the field of mechanics and its theoretical | Written                 | 50%                |  |  |
|                 | basics                                          |                         |                    |  |  |
| 10.5 Laboratory | Resolving of some practical problems            | Test                    | 50%                |  |  |
|                 |                                                 |                         |                    |  |  |

#### 10.6 Minimal performance standard

- Presentation of an experimental method from the field of mechanics and its theoretical basics
- Properly work of a laboratory test

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof. univ. dr. eng. Ioan Călin ROȘCA

Prof. univ. dr. eng. Maria Luminița SCUTARU

Dean

**Head of Department** 

Prof. univ. dr. eng. Horațiu TEODORESCU-DRĂGHICESCU

Prof. univ. dr. eng. Horațiu TEODORESCU-DRĂGHICESCU

Course holder

Holder of laboratory

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level choose from among: Bachelor / Master / Doctorat;
- <sup>3)</sup> Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brasov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | Master                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

### 2. Data about the course

| 2.1 Name of course                        |   |              | Ref | ormulated fuels and bi   | ofuel | S           |                               |     |
|-------------------------------------------|---|--------------|-----|--------------------------|-------|-------------|-------------------------------|-----|
| 2.2 Course convenor                       |   |              | Ass | oc. prof. dr. eng. Dumit | trașc | u Dorin-Ion |                               |     |
| 2.3 Seminar/ laboratory/ project convenor |   |              | Ass | oc. prof. dr. eng. Dumit | rașci | u Dorin-lon |                               |     |
| 2.4 Study year                            | I | 2.5 Semester | I   | 2.6 Evaluation type      | Ε     | 2.7 Course  | Content <sup>3)</sup>         | PC  |
|                                           |   |              |     |                          |       | status      | Attendance type <sup>4)</sup> | CPC |

### 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | per of hours per week 3 out of which: 3.2 lecture 2 3.3 seminar/ laboratory/ project |                           |                                                              | 3.3 seminar/ laboratory/ project | 0/1/0  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------|----------------------------------|--------|
| 3.4 Total number of hours in                                                                | 42                                                                                   | out of which: 3.5 lecture | ut of which: 3.5 lecture 28 3.6 seminar/ laboratory/ project |                                  | 0/14/0 |
| the curriculum                                                                              |                                                                                      |                           |                                                              |                                  |        |
| Time allocation                                                                             |                                                                                      |                           |                                                              |                                  | hours  |
| Study of textbooks, course support, bibliography and notes                                  |                                                                                      |                           |                                                              |                                  | 34     |
| Additional documentation in libraries, specialized electronic platforms, and field research |                                                                                      |                           |                                                              |                                  | 27     |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |                                                                                      |                           |                                                              |                                  | 16     |
| Tutorial                                                                                    |                                                                                      |                           |                                                              |                                  | 4      |
| Examinations                                                                                |                                                                                      |                           |                                                              |                                  | 2      |
| Other activities                                                                            |                                                                                      |                           |                                                              |                                  |        |

| 3.7 Total number of hours of student activity |     |
|-----------------------------------------------|-----|
| 3.8 Total number per semester                 | 125 |
| 3.9 Number of credits <sup>5)</sup>           | 5   |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | • |
|-------------------------|---|
| 4.2 competences-related | • |

### 5. Conditions (if applicable)

| 5.1 for course development                       | • |
|--------------------------------------------------|---|
| 5.2 for seminar/ laboratory/ project development | • |

### 6. Specific competences and learning outcomes

Professional competences

C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems

L.O.1.1. The graduate can design sketches and design elements necessary for the development and communication of design concepts;

L.O.1.2. The graduate can analyze the principles to be used in the development of technical projects

L.O.1.3. The graduate can use technical documentation in the technical process, in general and, in particular, for the realization of propulsion systems;

- CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering
  - L.O.1.1 The graduate can adequately use specialized information in professional communication.
  - L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.
  - L.O.1.3 The graduate has the ability to coordinate the conception, calculation and design activity of a propulsion system/mechanical system.
- CT2. Autonomy and critical thinking
  - L.O.2.1 The graduate develops his own way of solving a task, working motivatedly, with little or no supervision.
  - L.O.2.2 The graduate has autonomy in making technical decisions or those related to the management of design activities
  - L.O.2.3 The graduate has the ability to ensure the quality of a mechanical structure and product/mechanical system.
  - L.O.2.4 The graduate can develop efficient and responsible work strategies, applying the principles, norms and values of the code of professional ethics.
  - L.O.2.6 The graduate has the ability to objectively self-assess the need for lifelong learning, use information and communication in an internationally spoken language for the purpose of insertion in the labor market and continuous adaptation to its requirements.
- CT3. Preparation and presentation of reports describing the results and processes of scientific or technical research.
  - L.O.3.1 The graduate can write and present technical reports for semester practice and/or for discipline projects, going through all the necessary stages, from documentation, idea/concept, modeling/simulation to testing/validation.
  - L.O.3.2 The graduate understands and ensures compliance with the norms of ethics and academic integrity in writing reports.
  - L.O.3.3 The graduate works independently for the purpose of scientific information and to obtain the data necessary to solve the project topics; identifies his own sources of documentation.
  - L.O.3.4 The graduate has the capacity for interpersonal communication, professional counseling and assuming leadership roles in the work team.

#### 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course objective | ■ The course has as its main objective the knowledge of students of current  |  |  |  |
|------------------------------|------------------------------------------------------------------------------|--|--|--|
|                              | trends regarding the evolution of automotive fuels, the correlation of their |  |  |  |
|                              | properties with the modifications made to internal combustion engines,       |  |  |  |
|                              | especially with complex chemical pollution reduction systems.                |  |  |  |
| 7.2 Specific objectives      | ■ Presentation of both the reformulation trends of classic fuels and the     |  |  |  |
|                              | conditions and context of the use of alternative fuels;                      |  |  |  |

#### 8. Content

| 8.1 Course                                                        | Teaching methods         | No. hours | Remarks |
|-------------------------------------------------------------------|--------------------------|-----------|---------|
| 1. Chemical composition of crude oil, fuels                       |                          | 2         |         |
| 2. Sources and technologies for obtaining fuels                   |                          | 2         |         |
| 3. Fossil fuels: physicochemical and exploitation characteristics |                          | 4         |         |
| 4. Alternative fuels                                              | Video projector, debates | 4         |         |
| 5. Gaseous fuels                                                  |                          | 4         |         |
| 6. Use of alternative fuels in internal combustion engines        |                          | 4         |         |
| 7. Environmental protection                                       |                          | 2         |         |
| 8. Reduction of fuel consumption                                  |                          | 2         |         |

| 9. Special fuels                            | Video projector, debates | 2 |  |
|---------------------------------------------|--------------------------|---|--|
| 10. Alternative fuel and propulsion systems |                          | 2 |  |

- 1. Arthur M. Brownstein, Renewable motor fuels, elsevier, 2015
- 2. Transitions to alternative vehicles and fuels, National Academy of Science, 2013
- 3. George E. Totten, Fuels and Lubricants Handbook, 2003
- 4. Harold H. Schobert, Chemistry of fossil fulels and biofuels, Cambridge University Press, 2013
- 5. James G. Speight, Synthetic fuels handbook, Mc Graw Hill, 2008
- 6. M.K. Gajendra Babu, Alternative transportation fuels, CRC Press, 2013

| 8.2 Seminar/ laboratory/ project                                    | Teaching-learning                                    | No. hours | Remarks |
|---------------------------------------------------------------------|------------------------------------------------------|-----------|---------|
|                                                                     | methods                                              |           |         |
| 1. Influence of hydrocarbon class composition on performance        |                                                      | 2         |         |
| and pollutant emissions; evaluation of fuel octane number           |                                                      | 2         |         |
| 2. Interpretation of the distillation curve of a fuel; correlations |                                                      | 2         |         |
| with engine handling and economy                                    |                                                      | 2         |         |
| 3. Analysis of the vacuum distillation curve of a biodiesel         | Video projector                                      | 2         |         |
| mixture; Influence of biodiesel content on t10. t50, t90            | Video projector,<br>debates, practical<br>activities | 2         |         |
| 4. Corrosive effects produced by the water content of the fuel;     |                                                      | 2         |         |
| Determination of the degree of water contamination                  |                                                      | 2         |         |
| 5. Determination of fuel density                                    |                                                      | 2         |         |
| 6. Safety in operation of fuels. Determination of the flash point   |                                                      | 2         |         |
| 7. Analysis of engine operation with two different fuels;           |                                                      | 2         |         |
| influence on performance and emissions                              |                                                      | <u> </u>  |         |

#### Bibliography

- 1. Arthur M. Brownstein, Renewable motor fuels, elsevier, 2015
- 2. Transitions to alternative vehicles and fuels, National Academy of Science, 2013
- 3. George E. Totten, Fuels and Lubricants Handbook, 2003
- 4. Harold H. Schobert, Chemistry of fossil fulels and biofuels, Cambridge University Press, 2013
- 5. James G. Speight, Synthetic fuels handbook, Mc Graw Hill, 2008
- 6. M.K. Gajendra Babu, Alternative transportation fuels, CRC Press, 2013
- 7. Maximino Manzanera, Alternative fuel, InTech, 2011
- 8. Michael Frank Hordeski, Alternative fuels—the future of hydrogen, CRC Press, 2007
- 9. Richard Folkson, Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Woodhead Publishing, 2014

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of the discipline, the skills acquired by students through participation in this course are consistent with the specific requirements necessary to address research topics in the field of fuels, the adaptation of unconventional fuels to conventional vehicles, and the assessment of the situation of car fleets from the point of view of fuel supply.

#### 10. Evaluation

| Activity type             | 10.1 Evaluation criteria         | 10.2 Evaluation methods | 10.3 Percentage    |
|---------------------------|----------------------------------|-------------------------|--------------------|
|                           |                                  |                         | of the final grade |
| 10.4 Course               | Knowledge of theoretical aspects | Exam                    | 50%                |
|                           | Practical analysis               |                         |                    |
| 10.5 Seminar/ laboratory/ | Evaluation test                  | Test                    | 25%                |

| project                           | roject Practical test                                                                           |  | 25% |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------|--|-----|--|--|
| 10.6 Minimal performance standard |                                                                                                 |  |     |  |  |
| • The grades obtained fo          | The grades obtained for the laboratory activities, respectively in the exam must be at least 5. |  |     |  |  |

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof. dr. ing. Ioan Călin ROȘCA,

Prof. dr. ing. Maria Luminița SCUTARU

Dean

**Head of Department** 

Conf. dr. ing. Dorin Ion DUMITRAȘCU,

Conf. dr. ing. Dorin Ion DUMITRAȘCU,

Course holder

Holder of laboratory

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

# 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brasov                               |
|------------------------------------|-----------------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                                          |
| 1.3 Department                     | Mechanical Engineering                                          |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                                          |
| 1.5 Study level <sup>2)</sup>      | Master                                                          |
| 1.6 Study programme/ Qualification | Practical integrated methods for propulsion systems engineering |

# 2. Data about the course

| 2.1 Name of course               |   |              | Academic ethics and integrity     |                     |   |            |                               |     |
|----------------------------------|---|--------------|-----------------------------------|---------------------|---|------------|-------------------------------|-----|
| 2.2 Course convenor              |   |              | Senior lecturer Simona ŞOICA, PhD |                     |   |            |                               |     |
| 2.3 Seminar/ laboratory/ project |   |              |                                   |                     |   |            |                               |     |
| convenor                         |   |              |                                   |                     |   |            |                               |     |
| 2.4 Study year                   | I | 2.5 Semester | I                                 | 2.6 Evaluation type | С | 2.7 Course | Content <sup>3)</sup>         | SC  |
|                                  |   |              |                                   |                     |   | status     | Attendance type <sup>4)</sup> | CPC |

# 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 1                                                                                         | out of which: 3.2 lecture | 1 | 3.3 seminar/ laboratory/ project | -     |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------|---|----------------------------------|-------|
| 3.4 Total number of hours in                                                                | Total number of hours in 14 out of which: 3.5 lecture 14 3.6 seminar/ laboratory/ project |                           |   |                                  |       |
| the curriculum                                                                              |                                                                                           |                           |   |                                  |       |
| Time allocation                                                                             |                                                                                           |                           |   |                                  | hours |
| Study of textbooks, course support, bibliography and notes                                  |                                                                                           |                           |   |                                  |       |
| Additional documentation in libraries, specialized electronic platforms, and field research |                                                                                           |                           |   |                                  |       |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |                                                                                           |                           |   |                                  | 12    |
| Tutorial                                                                                    |                                                                                           |                           |   |                                  |       |
| Examinations                                                                                |                                                                                           |                           |   |                                  |       |
| Other activities                                                                            |                                                                                           |                           |   |                                  |       |

| 3.7 Total number of hours of student activity | 36 |
|-----------------------------------------------|----|
| 3.8 Total number per semester                 | 50 |
| 3.9 Number of credits <sup>5)</sup>           | 2  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  |                                    |
|-------------------------|------------------------------------|
| 4.2 competences-related | Communication and academic writing |

# 5. Conditions (if applicable)

| • •                          |                                                    |
|------------------------------|----------------------------------------------------|
| 5.1 for course development   |                                                    |
| 5.2 for seminar/ laboratory/ | Room equipped with projector/TV, board and marker. |
| project development          |                                                    |

# 6. Specific competences and learning outcomes

| TC1. Define and/or use scientific concepts, theories and methods in mechanical engineering R.Î.1.1 The graduate is able to use specialized information in professional communication.  R.Î.1.2 The graduate is able to apply theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.  R.Î.1.3 The graduate is able to coordinate the conception, calculation and design of a propulsion/mechanical system.  TC2. Autonomy and critical thinking  R.Î.2.1 The graduate develops his/her own way of solving a task, working in a motivated manner and independently.  R.Î.2.2 The graduate is able to make technical or management decisions related to designing tasks.  R.Î.2.3 The graduate is able to assure the quality of a mechanical structure and mechanical product/system.  R.Î.2.4 The graduate is able to develop strategies for effective and responsible work, applying the principles, rules and values of the code of professional ethics.  R.Î.2.6 The graduate is able to assess his/her own need for lifelong learning, to use of information and communication in an international language in order to adapt to the continuous requirements of the labor market.  TC3. Prepare and present reports describing the results and processes of scientific or technical research.  R.Î.3.1 The graduate is able to write and present technical reports for academic and scientific projects, going through all the necessary steps from documentation, idea/conception, modeling/simulation, and testing/validation.  R.Q.3.2 The graduate works independently for the purpose of scientific information in order to obtain the data needed to solve project assignments; identifies own sources of documentation.  R.Î.3.4 The graduate masters interpersonal communication skills, and assumes leadership roles in the teamwork.                |                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R.Î.1.1 The graduate is able to use specialized information in professional communication.  R.Î.1.2 The graduate is able to apply theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.  R.Î.1.3 The graduate is able to coordinate the conception, calculation and design of a propulsion/mechanical system.  TC2. Autonomy and critical thinking  R.Î.2.1 The graduate develops his/her own way of solving a task, working in a motivated manner and independently.  R.Î.2.2 The graduate is able to make technical or management decisions related to designing tasks.  R.Î.2.3 The graduate is able to assure the quality of a mechanical structure and mechanical product/system.  R.Î.2.4 The graduate is able to develop strategies for effective and responsible work, applying the principles, rules and values of the code of professional ethics.  R.Î.2.6 The graduate is able to assess his/her own need for lifelong learning, to use of information and communication in an international language in order to adapt to the continuous requirements of the labor market.  TC3. Prepare and present reports describing the results and processes of scientific or technical research.  R.Î.3.1 The graduate is able to write and present technical reports for academic and scientific projects, going through all the necessary steps from documentation, idea/conception, modeling/simulation, and testing/validation.  R.Q.3.2 The graduate understands and comply with the standards of ethics and academic integrity in report writing.  R.Î.3.3 The graduate works independently for the purpose of scientific information in order to obtain the data needed to solve project assignments; identifies own sources of documentation.  R.Î.3.4 The graduate masters interpersonal communication skills, and assumes leadership roles in the | Professional competences |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Transversal competences  | R.Î.1.1 The graduate is able to use specialized information in professional communication. R.Î.1.2 The graduate is able to apply theoretical and practical knowledge, methods and terminology in the field of mechanical engineering. R.Î.1.3 The graduate is able to coordinate the conception, calculation and design of a propulsion/mechanical system. TC2. Autonomy and critical thinking R.Î.2.1 The graduate develops his/her own way of solving a task, working in a motivated manner and independently. R.Î.2.2 The graduate is able to make technical or management decisions related to designing tasks. R.Î.2.3 The graduate is able to assure the quality of a mechanical structure and mechanical product/system. R.Î.2.4 The graduate is able to develop strategies for effective and responsible work, applying the principles, rules and values of the code of professional ethics. R.Î.2.6 The graduate is able to assess his/her own need for lifelong learning, to use of information and communication in an international language in order to adapt to the continuous requirements of the labor market. TC3. Prepare and present reports describing the results and processes of scientific or technical research. R.Î.3.1 The graduate is able to write and present technical reports for academic and scientific projects, going through all the necessary steps from documentation, idea/conception, modeling/simulation, and testing/validation. R.Q.3.2 The graduate understands and comply with the standards of ethics and academic integrity in report writing. R.Î.3.3 The graduate works independently for the purpose of scientific information in order to obtain the data needed to solve project assignments; identifies own sources of documentation. |

# 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course objective | Ethics in scientific research                                                  |
|------------------------------|--------------------------------------------------------------------------------|
| 7.2 Specific objectives      | Adapt and apply scientific writing rules in line with international standards. |
|                              | Managing professional writing                                                  |

# 8. Content

| 8.1 Course                                           | Teaching methods  | Number of hours | Remarks |
|------------------------------------------------------|-------------------|-----------------|---------|
| 8.1.1. Scientific discourse; Importance of ethics in | Problematization. | 1               |         |
| scientific research.                                 | Applications      | '               |         |
| 8.1.2. Elaboration of academic and scientific work:  | Problematization. | 2               |         |
| Documentation, Research. Scientific databases        | Applications      | 2               |         |
| 8.1.3. Elaboration of academic and scientific work:  | Problematization. | 2               |         |
| thesis, hypotheses, research methods                 | Applications      | 2               |         |
| 8.1.4. Elaboration of academic and scientific work:  | Problematization. | 2               |         |

| Research methods in engineering                      | Applications      |   |  |
|------------------------------------------------------|-------------------|---|--|
| 8.1.5. Elaboration of academic and scientific work:  | Problematization. | 2 |  |
| Organizing texts, writing the abstract;              | Applications      | 2 |  |
| 8.1.6. Elaboration of academic and scientific work:  | Problematization. | 2 |  |
| Adapting internationally agreed styles;              | Applications      | 2 |  |
| 8.1.7. Writing technical/scientific texts (technical | Problematization. | 2 |  |
| reports, instructions, procedures, user manuals);    | Applications      | 3 |  |

Alley, M. (2018) The craft of scientific writing. New York: Springer.

Bailey, S. (2003) Academic Writing: A practical guide for students. London: Routledge.

Barrass, R. (2002) *Scientists Must Write: A guide to better writing for scientists, engineers and students.* London: Routledge.

Laplante, P.A. (2012) Technical writing. Boca Raton: CRC Press Taylor & Francis Group.

Marder, M. P. (2011). Research methods for science. Cambridge: Cambridge University Press.

Thiel, D. V. (2014). Research methods for engineers. Cambridge: Cambridge University Press

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

- · Academic and scientific rigor and honesty;
- Adapt technical writing skills to the future workplace

#### 10. Evaluation

| Activity type             | 10.1 Evaluation criteria  | 10.2 Evaluation methods | 10.3 Percentage    |  |
|---------------------------|---------------------------|-------------------------|--------------------|--|
|                           |                           |                         | of the final grade |  |
| 10.4 Course               | Applying seminar concepts | Written exam            | 100%               |  |
|                           |                           |                         |                    |  |
| 10.5 Seminar/ laboratory/ |                           |                         |                    |  |
| project                   |                           |                         |                    |  |

### 10.6 Minimal performance standard

• Complying with the rules of scientific writing and obtaining the passing grade

This course outline was certified in the Department Board meeting on 2709/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

Senior lecturer Simona ȘOICA, PhD

**Head of Department** 

Course holder

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

# 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                               |
|------------------------------------|-----------------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                                          |
| 1.3 Department                     | Mechanical Engineering                                          |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                                          |
| 1.5 Study level <sup>2)</sup>      | MASTER                                                          |
| 1.6 Study programme/ Qualification | Metode practice integrate în ingineria sistemelor de propulsie  |
|                                    | Practical integrated methods for propulsion systems engineering |

# 2. Data about the course

| 2.1 Name of course               |  |                                | Pre                            | Predictive maintenance for industrial equipment |            |                       |                               |    |
|----------------------------------|--|--------------------------------|--------------------------------|-------------------------------------------------|------------|-----------------------|-------------------------------|----|
| 2.2 Course convenor              |  | Pro                            | Prof.PhD.eng. Ioan Călin ROȘCA |                                                 |            |                       |                               |    |
| 2.3 Seminar/ laboratory/ project |  | Prof.PhD.eng. Ioan Călin ROȘCA |                                |                                                 |            |                       |                               |    |
| convenor                         |  |                                |                                |                                                 |            |                       |                               |    |
| 2.4 Study year I 2.5 Semester    |  | 1                              | 2.6 Evaluation type            | E                                               | 2.7 Course | Content <sup>3)</sup> | PC                            |    |
|                                  |  |                                |                                |                                                 |            | status                | Attendance type <sup>4)</sup> | EC |

# **3. Total estimated time** (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 4  | out of which: 3.2 lecture | 2  | 3.3 Laboratory | 2  |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|----------------|----|
| 3.4 Total number of hours in                                                                | 56 | out of which: 3.5 lecture | 28 | 3.6 Laboratory | 28 |
| the curriculum                                                                              |    |                           |    |                |    |
| Time allocation                                                                             |    |                           |    |                |    |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |                |    |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |                |    |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    | 20             |    |
| Tutorial                                                                                    |    |                           |    |                |    |
| Examinations                                                                                |    |                           |    |                |    |
| Other activities                                                                            |    |                           |    |                |    |

| 3.7 Total number of hours of student activity |     |
|-----------------------------------------------|-----|
| 3.8 Total number per semester                 | 125 |
| 3.9 Number of credits <sup>5)</sup>           | 5   |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | • | Not provided in the curriculum            |
|-------------------------|---|-------------------------------------------|
| 4.2 competences-related | • | Basic knowledge of mechanical engineering |
|                         | • | Software operating abilitie               |

# **5. Conditions** (if applicable)

| 5.1 for course      | Lectures are held in rooms with internet access and multimedia teaching equipment    |
|---------------------|--------------------------------------------------------------------------------------|
| development         |                                                                                      |
| 5.2 for seminar/    | The laboratory will be done in university laboratory and at Schaeffler company using |
| laboratory/ project | computers equiped with specific software.                                            |
| development         |                                                                                      |

# 6. Specific competences

|                          | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|
|                          | R.Î.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate               |
| Ces                      | design concepts;                                                                                                   |
| eter                     | R.Î.1.2. The graduate can analyze the principles that must be used in the development of technical projects        |
| mp                       | R.Î.1.3. The graduate can use the technical documentation in the technical process, in general and, in particular, |
| 0                        | for the realization of propulsion systems;                                                                         |
| iona                     | C2. The ability to apply simulation and testing methods for propulsion systems and to use specialized programs     |
| Professional competences | for design (CAD/CAE)                                                                                               |
| Prof                     | R.Î.2.1. The graduate can simulate the behavior of propulsion system models based on specialized software;         |
|                          | R.Î.2.2. The graduate can develop test protocols and interpret and analyze data collected during testing to        |
|                          | formulate conclusions and solutions.                                                                               |
| Se                       | CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering     |
| enc                      | R.Î.1.1 The graduate can adequately use specialized information in professional communication.                     |
| pet                      | R.Î.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology in        |
| L O.                     | the field of mechanical engineering.                                                                               |
| salo                     | CT2. Autonomy and critical thinking                                                                                |
| Vers                     | R.Î.2.1 The graduate develops his own way of solving a task, working motivated, with little or no supervision.     |
| Transversal competences  | R.Î.2.2 The graduate has autonomy in making technical decisions or those related to the management of              |
| Ļ                        | design activities                                                                                                  |

# **7. Course objectives** (resulting from the specific competences to be acquired)

| 7.1 General course      | Provide students with the principles, tools and methods monitoring different industrial |
|-------------------------|-----------------------------------------------------------------------------------------|
| objective               | equipment for a predictive maintenance                                                  |
| 7.2 Specific objectives | Develop team work skills so that learners can work with other people to assist in the   |
|                         | improvement of the quality equipment                                                    |

# 8. Content

| 8.1 Course                                                                  | Teaching      | Number of | Remarks |
|-----------------------------------------------------------------------------|---------------|-----------|---------|
|                                                                             | methods       | hours     |         |
| Course 1. Predictive maintenance basics. 1.1.Maintenance philosophies;      |               |           |         |
| 1.2. Evolution of maintenance philosophies; 1.3. Plant machinery            |               | 2h        |         |
| classification; 1.4. Principle of predictive maintenance; 1.5. Predictive   |               |           |         |
| maintenance techniques                                                      |               |           |         |
| Course 2. Data acquisition. 2.1. Introduction; 2.2. Vibration transducers   |               |           |         |
| (characteristics and mounting); 2.3. Conversion of vibrations in electrical |               | 4h        |         |
| signal; 2.4. Equipment used in data acquisition;                            | Heuristic     |           |         |
| Course 3. Signal processing. 3.1. The Fast Fourier Transform (FFT)          | conversation, |           |         |
| analysis; 3.2. Time analysis; 3.3. Phase analysis; 3.4. Special signal      | examples      | 2h        |         |
| processes.                                                                  |               |           |         |
| Course 4. Vibration sources, path, response. 4.1. Vibration sources; 4.2.   |               |           |         |
| Vibrations propagation; 4.3. Frequency response function;                   |               | 2h        |         |
| Course 5. Machine fault diagnosis based on vibration analysis               |               |           |         |
| 5.1. Introduction; 5.2. Machinery fault diagnosed by vibration analysis;    |               | 4 h       |         |
| 5.3. Machinery fault diagnosed by noise analysis;                           |               |           |         |
| Course 6. Different predictive maintenance technique. 6.1. Introduction;    |               | 2h        |         |
| 6.2. Ultrasound; 6.3. Infrared thermography                                 |               |           |         |

| Course 7. Correcting faults that cause vibrations - 7.1. Introduction;     |               |     |  |
|----------------------------------------------------------------------------|---------------|-----|--|
| 7.2. Balancing; 7.3. Alignment; 7.4. Resonance vibration control with      |               | 4 h |  |
| dynamic absorbers.                                                         |               |     |  |
| Course 8. Correcting faults that cause vibrations – 2 (machine elements).  | Heuristic     |     |  |
| 8.1. Bearing diagnosis; 8.2. Gears diagnosis; 8.3. Sleeve bearing          | conversation, | 4 h |  |
| diagnosis; 8.4. Chain transmission diagnosis; 8.5. Belt transmission       | examples      |     |  |
| diagnosis; 8.6. Cams transmission diagnosis.                               |               |     |  |
| Course 9. Correcting faults that cause vibrations – 3 (machine tools)      |               |     |  |
| 9.1. Electric motors diagnosis; 9.2. Fans diagnosis; 9.3. Turbochargers    |               | 4 h |  |
| diagnosis; 9.4. Machine tools diagnosis; 9.5. Hydraulic systems diagnosis. |               |     |  |

- 1. Gafițeanu, M., Crețu, Sp., Drăgan, B. Diagnosticarea vibroacustică a mașinilor și utilajelor, Editura tehnică, ISBN 973-31-0123-0, 1989.
- 2. Moubray, J.: Reliability centered Maintenance II, Industrial Press, New York, 2000.
- 3. Paresh Girdhar Practical Machinery Vibration Analysis and Predictive Maintenance, Elsevier, ISBN 0-7506-6275-1, 2004
- 4. Roșca I. C. Mechanical Vibrations, Editura Universității Transilvania din Brașov, 2009
- 5. \* \* \* RCM GUIDE RELIABILITY-CENTERED MAINTENANCE GUIDE, NASA, September 2008 (https://fred.hq.nasa.gov/Assets/Docs/2015/NASA\_RCMGuide.pdf)

| 8.2 Laboratory                                      | Teaching-learning | Number of | Remarks |
|-----------------------------------------------------|-------------------|-----------|---------|
|                                                     | methods           | hours     |         |
| Equipment used in predictive maintenance            |                   | 2 h       |         |
| The Fast Fourier Transform (FFT) and time analysis; |                   | 4 h       |         |
| Frequency response function                         | Heuristic         | 2 h       |         |
| Noise analysis                                      | conversation,     | 4 h       |         |
| Bearing diagnosis                                   | Tests             | 4 h       |         |
| Gears diagnosis                                     |                   | 4 h       |         |
| Electric motors diagnosis                           |                   | 4 h       |         |
| Machine tools diagnosis                             |                   | 4 h       |         |

#### Bibliography

1. Paresh Girdhar – Practical Machinery Vibration Analysis and Predictive Maintenance, Elsevier, ISBN 0-7506-6275-1, 2004

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The graduate students will be able to detect, by measuring, the possible defects of different industrial equipment and will be able to offer suggestions on predictive maintenance.

#### 10. Evaluation

| Activity type                                                 | 10.1 Evaluation criteria    | 10.2 Evaluation methods          | 10.3 Percentage    |  |  |  |
|---------------------------------------------------------------|-----------------------------|----------------------------------|--------------------|--|--|--|
|                                                               |                             |                                  | of the final grade |  |  |  |
| 10.4 Course                                                   | Evaluation consists of a    | Multiple choice questionnaire    | 80%                |  |  |  |
|                                                               | scale questionnaire         |                                  |                    |  |  |  |
| 10.5 Laboratory                                               | Develop criteria to use for | Testing the ability to do a test | 20%                |  |  |  |
|                                                               | gaining feedback            |                                  |                    |  |  |  |
| 10.6 Minimal performance standard                             |                             |                                  |                    |  |  |  |
| To be able to present the basics of the maintenance technique |                             |                                  |                    |  |  |  |

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,

Prof.dr.ing. Maria Luminița SCUTARU,

Dean

Head of Department

Prof.dr.ing. Ioan Călin ROȘCA, Prof.dr.ing. Ioan Călin ROȘCA,

Course holder Holder of seminar

#### Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level *choose from among:* BA/MA/PhD.;
- Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course)
- Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- One credit is the equivalent of 25 30 study hours (teaching activities and individual study).

# 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                               |
|------------------------------------|-----------------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                                          |
| 1.3 Department                     | Mechanical Engineering                                          |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                                          |
| 1.5 Study level <sup>2)</sup>      | MASTER                                                          |
| 1.6 Study programme/ Qualification | Metode practice integrate în ingineria sistemelor de propulsie  |
|                                    | Practical integrated methods for propulsion systems engineering |

# 2. Data about the course

| 2.1 Name of course |     |                               | Noise and vibrations in manufacturing |                     |   |            |                               |    |
|--------------------|-----|-------------------------------|---------------------------------------|---------------------|---|------------|-------------------------------|----|
| 2.2 Course conve   | nor |                               | Prof.dr.eng. Ioan Călin ROȘCA         |                     |   |            |                               |    |
| 2.3 Laboratory     |     | Prof.dr.eng. Ioan Călin ROȘCA |                                       |                     |   |            |                               |    |
| 2.4 Study year     | -   | 2.5 Semester                  | 1                                     | 2.6 Evaluation type | Ε | 2.7 Course | Content <sup>3)</sup>         | PC |
|                    |     |                               |                                       |                     |   | status     | Attendance type <sup>4)</sup> | EC |

# 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 4  | out of which: 3.2 lecture | 2  | 3.3 Laboratory | 2  |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|----------------|----|
| 3.4 Total number of hours in                                                                | 56 | out of which: 3.5 lecture | 28 | 3.6 Laboratory | 28 |
| the curriculum                                                                              |    |                           |    |                |    |
| Time allocation                                                                             |    |                           |    |                |    |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |                |    |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |                |    |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    |                |    |
| Tutorial                                                                                    |    |                           |    |                |    |
| Examinations                                                                                |    |                           |    |                |    |
| Other activities                                                                            |    |                           |    |                |    |

| 3.7 Total number of individual study hours |     |
|--------------------------------------------|-----|
| 3.8 Total number per semester              | 125 |
| 3.9 Number of credits <sup>5)</sup>        | 5   |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Not provided in the curriculum            |
|-------------------------|-------------------------------------------|
| 4.2 competences-related | Basic knowledge of mechanical engineering |
|                         | Software operating abilitie               |

# **5. Conditions** (if applicable)

| 5.1 for course development   | • Lectures are held in rooms with internet access and multimedia teaching        |  |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|
|                              | equipment                                                                        |  |  |  |  |  |
| 5.2 for seminar/ laboratory/ | • The laboratory will be done in university laboratory and at Schaeffler Romania |  |  |  |  |  |
| project development          | company using computers equiped with specific software.                          |  |  |  |  |  |

# 6. Specific competences

|                          | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| 10                       | R.Î.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate               |
| Jces                     | design concepts;                                                                                                   |
| eter                     | R.Î.1.2. The graduate can analyze the principles that must be used in the development of technical projects        |
| ш                        | R.Î.1.3. The graduate can use the technical documentation in the technical process, in general and, in particular, |
| 00                       | for the realization of propulsion systems;                                                                         |
| Professional competences | C2. The ability to apply simulation and testing methods for propulsion systems and to use specialized programs     |
| ess                      | for design (CAD/CAE)                                                                                               |
| Prof                     | R.Î.2.1. The graduate can simulate the behavior of propulsion system models based on specialized software;         |
|                          | R.Î.2.2. The graduate can develop test protocols and interpret and analyze data collected during testing to        |
|                          | formulate conclusions and solutions.                                                                               |
| es                       | CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering     |
| enc                      | R.Î.1.1 The graduate can adequately use specialized information in professional communication.                     |
| pet                      | R.Î.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology in        |
| L O                      | the field of mechanical engineering.                                                                               |
| salo                     | CT2. Autonomy and critical thinking                                                                                |
| ver                      | R.Î.2.1 The graduate develops his own way of solving a task, working motivated, with little or no supervision.     |
| Transversal competences  | R.Î.2.2 The graduate has autonomy in making technical decisions or those related to the management of              |
| -                        | design activities                                                                                                  |

# **7. Course objectives** (resulting from the specific competences to be acquired)

| 7.1 General course | • Provide students with the principles, tools and methods used in mechanical vibrations,     |
|--------------------|----------------------------------------------------------------------------------------------|
| objective          | stability and noise describtion related to the manufacturing process and involved equipment; |
| 7.2 Specific       | Develop the ability to do models of mechanical equipment used in mechanical vibrations,      |
| objectives         | stability and noise analysis;                                                                |
|                    | To identify parameters of cutting process and noise control;                                 |
|                    | To offer solution for increasing the stability and noise reduction.                          |

# 8. Content

| 8.1 Course                                                                     | Teaching      | Number of | Remarks |
|--------------------------------------------------------------------------------|---------------|-----------|---------|
|                                                                                | methods       | hours     |         |
| Course 1. Basic of vibrations 1.1.Definition; 1.2. Systems with one            |               |           |         |
| degree of freedom; 1.3. Systems with two degrees of freedom; 1.4.              |               | 2h        |         |
| Systems with multiple degrees of freedom;                                      |               |           |         |
| <b>Course 2. The cutting process.</b> 2.1. The cutting process considered as a |               |           |         |
| dynamic process; 2.2. Inner and outer modulation in the dynamics of            |               |           |         |
| the cutting process; 2.3. The cutting process considered as a linear           | Heuristic     | 2h        |         |
| dynamic system; 2.4. The cutting process considered as a non-linear            | conversation, |           |         |
| dynamic system; 2.5. The cutting process considered as a random                | examples      |           |         |
| dynamic system;                                                                |               |           |         |
| Course 3. Identification of the cutting process system parameters              |               |           |         |
| 3.1. The linear dynamic cutting system; 3.2. The harmonically                  |               | 2h        |         |
| linearized dynamic machining system;                                           |               |           |         |
| Course 4. Particular cases of cutting process systems. 4.1. System of          |               | 4h        |         |
| drilling; 4.2. System of milling; 4.4. System of grinding;                     |               |           |         |

| Course 5. Variation of the parameters of the cutting process depending     |               |    |  |
|----------------------------------------------------------------------------|---------------|----|--|
| on the machining conditions. 5.1. Influence of the conditions under        |               |    |  |
| which the identification of the cutting process system parameters is       |               | 4h |  |
| carried on; 5.2. Identification of production and setting of metal-        |               |    |  |
| cutting process.                                                           |               |    |  |
| Course 6. The elastic structure of the machine tools. 6.1. Particularities |               |    |  |
| of the machine-tools structures; 6.2. Models of the elastic structures;    |               |    |  |
| 6.3. Identification of the dynamic characteristic of the elastic           |               | 4h |  |
| structures; 6.4. Simultaneous identification of the parameters of          |               |    |  |
| cutting process and elastic system                                         |               |    |  |
| Course 7. Stability of the time invariant dynamic machining systems        | Heuristic     |    |  |
| 7.1. Equations of the dynamic machining systems; 7.2. Stability of the     | conversation, |    |  |
| single variable dynamic machining system; 7.3. Stability of the            | examples      | 4h |  |
| multivariable variable dynamic machining system; 7.4. Graphical            |               |    |  |
| methods for stability analysis                                             |               |    |  |
| Course 8. Noise. 8.1. Introduction; 8.2. Basic of acoustics; 8.3. Levels   |               |    |  |
| of noise; 8.4. Noise sources in manufacturing process; 8.5. Noise          |               | 4h |  |
| maps in industry; 8.6 Standards of noise in industry; 8.8. Noise           |               |    |  |
| measurement technique.                                                     |               |    |  |
| Course 9. Noise protection systems                                         |               | 2h |  |
| 9.1. Introduction; 9.2. Technical solutions for noise reducing;            |               |    |  |
| 9.3. Design of noise system protection. Silencer design;                   |               |    |  |

- 1. Chiriacescu T. Sergiu Stability in the dynamics of metal cutting, Elsevier, Studiess in Applied Mechanics, ISBN 973-27-0055-6
- 2. Cheremisinoff P. Nicholas Noise control, A practical guide, ISBN: 978-0-8155-1399-5, 1996
- 3. Gafițeanu, M., Crețu, Sp., Drăgan, B. Diagnosticarea vibroacustică a mașinilor și utilajelor, Editura tehnică, ISBN 973-31-0123-0, 1989.
- 4. Peterson, P., G., Arnold Handbook of Noise Measurement, Ninth edition, 1980, <a href="http://www.ietlabs.com/pdf/Manuals/Handbook\_Noise\_Measurement.pdf">http://www.ietlabs.com/pdf/Manuals/Handbook\_Noise\_Measurement.pdf</a>
- 5. Randall F. Barron Industrial Noise Control and Acoustics, ISBN: 0-8247-0701-X, 2003
- 6. Roșca I. C. Acustică tehnică, Editura Universității Transilvania din Brașov, 2015
- 7. \* \* \* Environmental noise measurement, Bruel & Kjaer, https://www.bksv.com/media/doc/br0139.pdf
- 8. \* \* \* Brüel & Kjær Sound & Vibration Measurement, <a href="http://www.cav.psu.edu/workshops/2014/B&K%20Intro.pdf">http://www.cav.psu.edu/workshops/2014/B&K%20Intro.pdf</a>
- 9. \* \* \* Matlab user manuals

| 8.2 Laboratory                                             | Teaching-learning       | Number of | Remarks |
|------------------------------------------------------------|-------------------------|-----------|---------|
|                                                            | methods                 | hours     |         |
| Laboratory 1 – Dynamic behaviour of S.D.F systems. Systems | Heuristic conversation, | 4 hours   |         |
| response by transfer function                              | Examples in MATLAB      |           |         |
| Laboratory 2 – Dynamic behaviour of M.D.F systems. Systems | Heuristic conversation. | 6 hours   |         |
| response.                                                  | Examples in MATLAB      |           |         |
| Laboratory 3 – Stability of systems                        | Heuristic conversation  | 4 hours   |         |
|                                                            | Examples in MATLAB      |           |         |
| Laboratory 4 – Noise measurement equipment. Tests of noise | Heuristic conversation, | 6 hours   |         |
| level of sound souces                                      | Tests in situ           |           |         |
| Laboratory 5 - Measurements of noise levels of different   | Heuristic conversation, | 8 hours   |         |
| manufacturing places                                       | Tests                   |           |         |

- 1. Cheremisinoff P. Nicholas Noise control, A practical guide, ISBN: 978-0-8155-1399-5, 1996
- 2. \* \* \* Brüel & Kjær Sound & Vibration Measurement, http://www.cav.psu.edu/workshops/2014/B&K%20Intro.pdf
- 3. \* \* \* Matlab user manuals

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The graduate students will be able to detect identify the system parameters of machine tools and cutting tool and noise generated by the manufacturing process in perspective to diminish the negative effect of vibrations and noise.

#### 10. Evaluation

| Activity type                                                | 10.1 Evaluation criteria    | 10.2 Evaluation methods          | 10.3 Percentage    |  |  |  |  |
|--------------------------------------------------------------|-----------------------------|----------------------------------|--------------------|--|--|--|--|
|                                                              |                             |                                  | of the final grade |  |  |  |  |
| 10.4 Course                                                  | Evaluation consists of a    | Multiple choice questionnaire    | 80%                |  |  |  |  |
|                                                              | scale questionnaire         |                                  |                    |  |  |  |  |
| 10.5 Laboratory                                              | Develop criteria to use for | Testing the ability to do a test | 20%                |  |  |  |  |
|                                                              | gaining feedback            |                                  |                    |  |  |  |  |
| 10.6 Minimal performance standard                            |                             |                                  |                    |  |  |  |  |
| To be able to present the basics of the vibrations and noise |                             |                                  |                    |  |  |  |  |

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board

Prof.dr.ing. Ioan Călin ROȘCA,

meeting on 30/10/2024.

Prof.dr.ing. Maria Luminița SCUTARU,

Dean

**Head of Department** 

Prof.dr.ing. Ioan Călin ROȘCA,

Prof.dr.ing. Ioan Călin ROȘCA,

Course holder

Holder of seminar

#### Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level choose from among: BA/MA/PhD;
- Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);

One credit is the equivalent of 25 study hours (teaching activities and individual study).

# 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | MASTER                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

# 2. Data about the course

| 2.1 Name of cour                            | se  |              | Profess | sional intership |   |            |                               |     |
|---------------------------------------------|-----|--------------|---------|------------------|---|------------|-------------------------------|-----|
| 2.2 Course conve                            | nor |              |         |                  |   |            |                               |     |
| 2.3 <del>Seminar/ laboratory/</del> project |     |              |         |                  |   |            |                               |     |
| convenor                                    |     |              |         |                  |   |            |                               |     |
| 2.4 Study year                              | I   | 2.5 Semester | 1       | 2.6 Evaluation   | С | 2.7 Course | Content <sup>3)</sup>         | PC  |
|                                             |     |              |         | type             |   | status     | Attendance type <sup>4)</sup> | CPC |

# 3. Total estimated time (hours of teaching activities per semester)

|                                                                                             | _                         |                           |             |              |       |  |
|---------------------------------------------------------------------------------------------|---------------------------|---------------------------|-------------|--------------|-------|--|
| 3.1 Number of hours per week                                                                | out of which: 3.2 lecture | 0                         | 3.3 Project | 12           |       |  |
| 3.4 Total number of hours in                                                                | 168                       | out of which: 3.5 lecture | 0           | 3.6. Project | 168   |  |
| the curriculum                                                                              |                           |                           |             |              |       |  |
| Time allocation                                                                             |                           |                           |             |              | hours |  |
| Study of textbooks, course support, bibliography and notes                                  |                           |                           |             |              |       |  |
| Additional documentation in libraries, specialized electronic platforms, and field research |                           |                           |             |              |       |  |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |                           |                           |             |              |       |  |
| Tutorial                                                                                    |                           |                           |             |              |       |  |
| Examinations                                                                                |                           |                           |             |              |       |  |
| Other activities                                                                            |                           |                           |             |              |       |  |
|                                                                                             |                           |                           |             |              | •     |  |

| 3.7 Total number of individual learning hours |   |  |  |  |  |
|-----------------------------------------------|---|--|--|--|--|
| 3.8 Total number per semester                 |   |  |  |  |  |
| 3.9 Number of credits <sup>4)</sup>           | 5 |  |  |  |  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  |                           |
|-------------------------|---------------------------|
| 4.2 competences-related | To be able to do projects |

# **5. Conditions** (if applicable)

| 5.1 for course development   |                                                                                |
|------------------------------|--------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | In the University laboratories and in the frame of Schaeffler Romania Company. |
| project development          |                                                                                |

# 6. Specific competences

|          | Professional<br>competences | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems      |
|----------|-----------------------------|----------------------------------------------------------------------------------------------------------------|
| la l     |                             | L.O.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate           |
| Sior     |                             | design concepts;                                                                                               |
| ofes     |                             | L.O.1.2. The graduate can analyze the principles that must be used in the development of technical projects    |
| P        |                             | L.O.1.3. The graduate can use the technical documentation in the technical process, in general and, in         |
|          |                             | particular, for the realization of propulsion systems;                                                         |
|          | Transversal<br>competences  | CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering |
| gg       |                             | L.O.1.1 The graduate can adequately use specialized information in professional communication.                 |
| Vers     |                             | L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology       |
| ans      |                             | in the field of mechanical engineering.                                                                        |
| <u> </u> |                             | L.O.1.3 The graduate has the ability to coordinate the activity of conception, calculation and design of a     |
|          |                             | propulsion system/mechanical system.                                                                           |

# 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course objective | To do a project / semester that demonstrate engineering skills acquired  during the first year semester. |
|------------------------------|----------------------------------------------------------------------------------------------------------|
|                              | during the first year semester                                                                           |
| 7.2 Specific objectives      | <ul> <li>Improving knowledge acquired in the two semesters of the first year</li> </ul>                  |

### 8. Content

| 8.1 Project                                           | Teaching methods        | Remarks |
|-------------------------------------------------------|-------------------------|---------|
| Identify issues for project practice                  |                         |         |
| Establishing project design practice                  |                         |         |
| Identification of development directions of the theme | Individual or team work |         |
| Analysis of the actual situation                      |                         |         |
| Determination of the solutions encountered problems   |                         |         |
| Presentation of projects                              |                         |         |

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The topic is made with the company Schaeffler Romania is centered on a theme of its own

## 10. Evaluation

| Activity type                                                                      | 10.1 Evaluation criteria        | 10.2 Evaluation methods | 10.3 Percentage    |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------|-------------------------|--------------------|--|--|--|
|                                                                                    |                                 |                         | of the final grade |  |  |  |
| 10.4 Course                                                                        |                                 |                         |                    |  |  |  |
| 10.5 Project                                                                       | Scientofic level of the project | Oral presentation       | 100%               |  |  |  |
| 10.6 Minimal performance standard                                                  |                                 |                         |                    |  |  |  |
| Students must prove, by design, the properties of terms and technical foundations. |                                 |                         |                    |  |  |  |

â

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

**Head of Department** 

| Course holder | Holder of project |
|---------------|-------------------|
| Not the case  | Individual holder |

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

# 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                    |  |  |
|------------------------------------|------------------------------------------------------|--|--|
| 1.2 Faculty                        | Mechanical Engineering                               |  |  |
| 1.3 Department                     | Mechanical Engineering                               |  |  |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |  |  |
| 1.5 Study level <sup>2)</sup>      | MASTER                                               |  |  |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |  |  |

# 2. Data about the course

| 2.1 Name of course               |  |   |                                   | Shopfloor management              |            |                       |                               |     |
|----------------------------------|--|---|-----------------------------------|-----------------------------------|------------|-----------------------|-------------------------------|-----|
| 2.2 Course convenor              |  |   |                                   | Prof.dr.eng. Aurica Luminița Pârv |            |                       |                               |     |
| 2.3 Seminar/ laboratory/ project |  |   | Prof.dr.eng. Aurica Luminița Pârv |                                   |            |                       |                               |     |
| convenor                         |  |   |                                   |                                   |            |                       |                               |     |
| 2.4 Study year 1 2.5 Semester    |  | 2 | 2.6 Evaluation type               | Ε                                 | 2.7 Course | Content <sup>3)</sup> | PC                            |     |
|                                  |  |   |                                   |                                   |            | status                | Attendance type <sup>4)</sup> | CPC |

# 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                |  | out of which: 3.2 lecture | 2  | 3.3 seminar/ laboratory/ project | 0/0/1  |
|---------------------------------------------------------------------------------------------|--|---------------------------|----|----------------------------------|--------|
| 3.4 Total number of hours in                                                                |  | out of which: 3.5 lecture | 28 | 3.6 seminar/ laboratory/ project | 0/0/14 |
| the curriculum                                                                              |  |                           |    |                                  |        |
| Time allocation                                                                             |  |                           |    |                                  | hours  |
| Study of textbooks, course support, bibliography and notes                                  |  |                           |    |                                  |        |
| Additional documentation in libraries, specialized electronic platforms, and field research |  |                           |    |                                  | 25     |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |  |                           |    |                                  | 28     |
| Tutorial                                                                                    |  |                           |    |                                  |        |
| Examinations                                                                                |  |                           |    |                                  |        |
| Other activities                                                                            |  |                           |    |                                  |        |

| 3.7 Total number of hours of student activity |   |  |  |  |
|-----------------------------------------------|---|--|--|--|
| 3.8 Total number per semester                 |   |  |  |  |
| 3.9 Number of credits <sup>5)</sup>           | 5 |  |  |  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | • -                                        |
|-------------------------|--------------------------------------------|
| 4.2 competences-related | general knowledge of industrial management |

# 5. Conditions (if applicable)

| 5.1 for course development   | Classroom with a whiteboard and projector  |
|------------------------------|--------------------------------------------|
| 5.2 for seminar/ laboratory/ | Laboratory with a whiteboard and projector |
| project development          |                                            |

#### 6. Specific competences and learning outcomes

|                             | C3. Coordination of Quality Management System and Project Management                                             |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|
|                             | L.O.3.1. The graduate can plan, coordinate, and direct all production activities to ensure product quality.      |
|                             | L.O.3.2. The graduate can carry out activities related to quality control by performing inspections and tests of |
|                             | services, processes, or products.                                                                                |
| nal                         | L.O.3.3. The graduate can manage and plan various resources needed for a specific project and monitor the        |
| Professional<br>competences | progress made within the project to achieve a specific objective within a given time frame and a                 |
| Profes                      | predetermined budget.                                                                                            |
| <u>4</u> 0                  | L.O.3.4. The graduate can perform cost and financial benefit analyses for a project over a certain period.       |
| ial<br>Ce                   |                                                                                                                  |
| Transversal                 |                                                                                                                  |
| ans'<br>mpe                 |                                                                                                                  |
| F 0                         |                                                                                                                  |

## 7. Course objectives (resulting from the specific competences to be acquired)

| /· coarse objectives (resumme rom president competences to se and amount |                                                                              |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| 7.1 General course objective                                             | Acquiring by students of methods for analyzing aspects related to the design |  |  |
|                                                                          | and implementation of organizational structures;                             |  |  |
| 7.2 Specific objectives                                                  | Understanding how organizational structure, culture, and behavior (of the    |  |  |
|                                                                          | organization and their employees) influence (or are influenced by) their     |  |  |
|                                                                          | internal and external environment;                                           |  |  |
|                                                                          | Familiarization with certain new concepts specific to organizations in the   |  |  |
|                                                                          | current context (design, culture, ethics, etc.)                              |  |  |

#### 8. Content

|                                                       | T                   |                 |         |
|-------------------------------------------------------|---------------------|-----------------|---------|
| 8.1 Course                                            | Teaching methods    | Number of hours | Remarks |
| Lean – concept, principles and methodology            | Interactive lecture | 2               |         |
| Gemba, gembutsu                                       | Interactive lecture | 2               |         |
| Value, Value Stream, Flow, Pull, Perfection           | Interactive lecture | 2               |         |
| Lean measurement: Cycle time, Takt time, Lead time    | Interactive lecture | 2               |         |
| Value stream mapping- Current state mapping           | Interactive lecture | 2               |         |
| Value stream mapping- Future state mapping            | Interactive lecture | 2               |         |
| 4 P model - Philosophy, Process, People and partners, | Interactive lecture | 2               |         |
| Problem solving                                       |                     |                 |         |
| Hexagon of Shop Floor Management                      | Interactive lecture | 2               |         |
| Problem solving. Change point management              | Interactive lecture | 2               |         |
| Visual management. 5 M                                | Interactive lecture | 2               |         |
| Standards. 5 S                                        | Interactive lecture | 2               |         |
| Communication. Efficiency improvement                 | Interactive lecture | 2               |         |

### Bibliography

- 1. Stasiak Betlejewska, R., Potkany, M., Pârv, L. (2016). Contemporary trends in the innovative production and services management. Scientific monograph. Zagreb: Croatian Quality Managers Society, Radoslava Cimermana 36a, 10000. Croația. ISBN 978-953-8067-05-1
- 2. Tomski, P., Pârv, L. (2016). Resources Organization Efficiency. Monography. Częstochowa: Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji (SMJiP). Polonia. ISBN 978-83-63978-39-6
- 3. Pârv, A.L. (2015). Managementul datelor în ingineria inovativă. Braşov : Editura Universită ii Transilvania din Braşov. ISBN 978-606-19-0568-3
- 4. Pârv, A.L. (2015). Managementul produc iei. Teorie și aplica ii ERP. Brașov : Editura Universită ii Transilvania din Brașov. ISBN 978-606-19-0553-9

| 8.2 Project                                               | Teaching-learning     | Number of hours | Remarks |
|-----------------------------------------------------------|-----------------------|-----------------|---------|
|                                                           | methods               |                 |         |
| Conduct a value stream mapping – both current and future. | Project, team working | 14 h            |         |
| Prioritize and implement a range improvement tools        |                       |                 |         |

- 1. Stasiak Betlejewska, R., Potkany, M., Pârv, L. (2016). Contemporary trends in the innovative production and services management. Scientific monograph. Zagreb: Croatian Quality Managers Society, Radoslava Cimermana 36a, 10000. Croația. ISBN 978-953-8067-05-1
- 2. Tomski, P., Pârv, L. (2016). Resources Organization Efficiency. Monography. Częstochowa: Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji (SMJiP). Polonia. ISBN 978-83-63978-39-6
- 3. Pârv, A.L. (2015). Managementul datelor în ingineria inovativă. Braşov : Editura Universită ii Transilvania din Braşov. ISBN 978-606-19-0568-3
- 4. Pârv, A.L. (2015). Managementul produc iei. Teorie și aplica ii ERP. Brașov : Editura Universită ii Transilvania din Brașov. ISBN 978-606-19-0553-9

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents have been developed in accordance to the employers' requirements, so that the learning outcomes can be applied in the industrial environment and in research.

#### 10. Evaluation

| Activity type | 10.1 Evaluation criteria                 | 10.2 Evaluation methods                            | 10.3 Percentage    |
|---------------|------------------------------------------|----------------------------------------------------|--------------------|
|               |                                          |                                                    | of the final grade |
| 10.4 Course   | Understanding the significance of        | Continuous assessment with                         | 30%                |
|               | concepts in the field of organizational  | objective items                                    |                    |
|               | management                               | Written exam with objective items                  | 30%                |
|               | Correct application of basic concepts in | Recorded throughout the                            | 10%                |
|               | the field of organizational management   | semester                                           |                    |
| 10.5 Project  | Activities carried out during the        | Oral presentation                                  | 30%                |
|               | semester                                 | - · - ·· F · - • • · · · · · · · · · · · · · · · · |                    |

#### 10.6 Minimal performance standard

• Establishing the complexity and opportunity for developing and/or enhancing quality management as well as the effective development of a design project theme in the field, which involves using methods, processes, and tools aimed at planning, controlling, and improving quality.

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

Prof.dr.ing. Aurica Luminița PÂRV

Prof.dr.ing.Aurica Luminița PÂRV

**Head of Department** 

Course holder Holder of project

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution        | Transilvania University of Brasov                    |
|-----------------------------------------|------------------------------------------------------|
| 1.2 Faculty                             | Mechanical Engineering                               |
| 1.3 Department                          | Mechanical Engineering                               |
| 1.4 Field of study Master <sup>1)</sup> | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>           | Master                                               |
| 1.6 Study programme/ Qualification      | Practical Integrated Methods for Engines Engineering |

### 2. Data about the course

| 2.1 Name of cour          | se                                  |              | ERP Systems (SAP)     |                       |            |            |                               |     |
|---------------------------|-------------------------------------|--------------|-----------------------|-----------------------|------------|------------|-------------------------------|-----|
| 2.2 Course convenor       |                                     |              | Ass                   | oc.prof. Lucia-Antone | ta CH      | IICOŞ, PhD |                               |     |
| 2.3 Seminar/ lab convenor | / laboratory/ project Assoc.prof. L |              | oc.prof. Lucia-Antone | ta CH                 | IICOŞ, PhD |            |                               |     |
| 2.4 Study year            | I                                   | 2.5 Semester | II                    | 2.6 Evaluation type   | Ε          | 2.7 Course | Content <sup>3)</sup>         | SC  |
|                           |                                     |              |                       |                       |            | status     | Attendance type <sup>4)</sup> | CPC |

## 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 3  | out of which: 3.2 lecture | 2  | 3.3 seminar/ laboratory/ project | 0/1/0 |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|----------------------------------|-------|
| 3.4 Total number of hours in                                                                | 42 | out of which: 3.5 lecture | 28 | 3.6 seminar/ laboratory/ project | 14    |
| the curriculum                                                                              |    |                           |    |                                  |       |
| Time allocation                                                                             |    |                           |    |                                  | hours |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    | 34                               |       |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    | 29                               |       |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    | 16                               |       |
| Tutorial                                                                                    |    |                           |    | 2                                |       |
| Examinations                                                                                |    |                           |    | 2                                |       |
| Other activities                                                                            |    |                           |    |                                  |       |

| 3.7 Total number of hours of student activity |     |  |
|-----------------------------------------------|-----|--|
| 3.8 Total number per semester                 | 125 |  |
| 3.9 Number of credits <sup>5)</sup>           | 5   |  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | • | They are not specified in the curricula |
|-------------------------|---|-----------------------------------------|
| 4.2 competences-related | • | Competences in using computers          |

| 5.1 for course development   | Room with projector, internet, computers and related software (SAP IDES ERP    |
|------------------------------|--------------------------------------------------------------------------------|
|                              | software system)                                                               |
| 5.2 for seminar/ laboratory/ | Laboratory room with projector, internet, computers and related software (SAP) |
| project development          | IDES ERP software system)                                                      |

## 6. Specific competences

|                         |           | C3. Coordination of the quality management system and project management                                        |
|-------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|
|                         |           | R.Î.3.1. The graduate can plan, coordinate and direct all production activities in order to ensure product      |
| nal                     | npetences | quality                                                                                                         |
| ssio                    | eter      | R.Î.3.3. The graduate can manage and plan various resources needed for a specific project and monitor the       |
| Professional            |           | progress recorded within the project to achieve a specific objective within a certain period of time and with   |
| Pr                      | 0         | a predetermined budget                                                                                          |
|                         |           | CT1. Defining and/or using scientific concepts, theories and methods in the field of mechanical engineering     |
|                         |           | R.Î.1.1 The graduate can adequately use specialized information in professional communication                   |
| Si                      |           | CT2. Autonomy and critical thinking                                                                             |
|                         |           | R.Î.2.1 The graduate develops his own way of solving a task, working motivatedly, with little or no             |
| pete                    |           | supervision                                                                                                     |
| Ш                       |           | R.Î.2.4 The graduate can develop efficient and responsible work strategies, applying the principles, norms      |
| sal c                   |           | and values of the code of professional ethics                                                                   |
| Transversal competences |           | R.Î.2.6 The graduate has the ability to objectively self-assess the need for lifelong learning, use information |
| ans                     |           | and communicate in an internationally spoken language for the purpose of insertion into the labor market        |
| <u> </u>                |           | and continuous adaptation to its requirements.                                                                  |

# 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course objective | Acquiring competences in the use of ERP (Enterprise Resource Planning) systems and in particular of the SAP system (Systems, Applications and Products in Data Processing) as well as understanding the ways of integrating these competences in the economic activities carried out at the level of an organization                                                                                                                                                                                                                                                                                                            |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 Specific objectives      | <ul> <li>Use of ERP software products to plan, control and improve process quality</li> <li>Understanding the purpose, technical, operational, organizational and strategic implications of ERP systems and motivation of organizations to implement ERP systems</li> <li>Understanding basic concepts (organizational elements, master data, transactions) and learning key techniques for working in SAP R/3: Navigating in the system, managing the sessions and menus, using the Help, working with transactions etc.</li> <li>Acquiring basic knowledge regarding integrated product data management in SAP ERP</li> </ul> |

### 8. Content

| 8.1 Course                                     | Teaching methods                                         | Number of hours | Remarks |
|------------------------------------------------|----------------------------------------------------------|-----------------|---------|
| Introduction: ERP,SAP                          |                                                          | 1               |         |
| ERP Software systems. ERP systems architecture |                                                          | 1               |         |
| SAP ERP modules                                | Interactive lecture,                                     | 1               |         |
| Logging On, Interface, Menus                   | Exposure, PowerPoint                                     | 2               |         |
| SAP navigation, Sessions multiple, Matchcode   | presentation on video projector,  Explanation by working | 4               |         |
| Basic concepts in SAP: Organization elements,  |                                                          | 4               |         |
| Master Data, Transactions                      | directly in SAP IDES ERP                                 |                 |         |
| Sales and Distibution (SD)                     | directly iii SAP IDES ERP                                | 2               |         |
| Production Planning                            |                                                          | 4               |         |
| Material Requirements Planning                 |                                                          | 4               |         |

| Purchasing                                 | Interactive lecture,     | 3 |  |
|--------------------------------------------|--------------------------|---|--|
| Outbound delivery, Picking, Transfer Order | Exposure, PowerPoint     | 2 |  |
|                                            | presentation on video    |   |  |
|                                            | projector,               |   |  |
|                                            | Explanation by working   |   |  |
|                                            | directly in SAP IDES ERP |   |  |

- 1. Chicoş, L.A., Szabo, V.G., Aplicații în SAP® IDES ERP, Editura MatrixRom, ISBN 978-606-25-0576-9, 2020, București
- 2. Chicos, L.A., Sisteme Informatice Integrate I, Suport de curs, (in format electronic)
- 3. Dickersbach, J. Th., Keller, G., Production Planning and Control with SAP ERP, ISBN: 978-1-59229-360-5, SAP Press, 2010
- 4. Meniul Help al sistemului SAP IDES ERP
- 5. https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm
- 6. Getting Started, Release 4.6C, SAP AG, 2000 (https://help.sap.com/doc/saphelp\_470/4.7/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)
- 7. Material Master (LO-MD-MM), Release 4.6C, SAP AG, 2001 (https://www.consolut.com/en/s/sap-ides-access/ides-online-help-pdfs/; https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)
- 8. Material Requirements Planning (PP-MRP), Release 4.6C, SAP AG, 2001 (https://www.consolut.com/en/s/sap-ides-access/ides-online-help-pdfs/; https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)
- Sales and Distribution (SD), Release 4.6C, SAP AG, 2001 (https://www.consolut.com/en/s/sap-ides-access/ides-online-help-pdfs/; https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)
- 10. 10. Purchasing (MM-PUR), Release 4.6C, SAP AG, 2001 (https://www.consolut.com/en/s/sap-ides-access/ides-online-help-pdfs/; https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)

| 8.2 Seminar/ laboratory/ project                       | Teaching-learning<br>methods | Number of hours | Remarks |
|--------------------------------------------------------|------------------------------|-----------------|---------|
| SAP Logging On, Interface, SAP standard menu,          |                              | 1               |         |
| Favorites, Navigation in SAP; Help: Field, Matchcode   |                              |                 |         |
| Basic concepts in SAP: organizational elements, Master | Interactive,                 | 1               |         |
| Data, Transaction Codes, Material Master Data          | Discussions                  |                 |         |
| Sales Order Creation                                   | PowerPoint                   | 1               |         |
| Material Requirements Planning on different levels     | presentation on              | 3               |         |
| Creating planned orders and production orders          | video projector,             | 3               |         |
| Purchasing: creating purchasing requisitions and       | Practical                    | 2               |         |
| purchasing orders                                      | applications in SAP          |                 |         |
| Goods Movement: Goods receipt                          | IDES ERP                     | 2               |         |
| Goods Issue; production confirmation                   |                              |                 |         |
| Outbound Delivery, Transfer Order, Picking             |                              | 1               |         |

#### Bibliography

1. Chicoş, L.A., Szabo, V.G., Aplicații în SAP® IDES ERP, Editura MatrixRom, ISBN 978-606-25-0576-9, 2020, București

- 2. Chicos, L.A., Sisteme Informatice Integrate I, Suport de curs, (in format electronic)
- 3. Dickersbach, J. Th., Keller, G., Production Planning and Control with SAP ERP, ISBN: 978-1-59229-360-5, SAP Press, 2010
- 4. Meniul Help al sistemului SAP IDES ERP
- 5. https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm
- 6. Getting Started, Release 4.6C, SAP AG, 2000 (https://help.sap.com/doc/saphelp\_470/4.7/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)
- 7. Material Master (LO-MD-MM), Release 4.6C, SAP AG, 2001 (https://www.consolut.com/en/s/sap-ides-access/ides-online-help-pdfs/; https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)
- 8. Material Requirements Planning (PP-MRP), Release 4.6C, SAP AG, 2001 (https://www.consolut.com/en/s/sap-ides-access/ides-online-help-pdfs/; https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)
- Sales and Distribution (SD), Release 4.6C, SAP AG, 2001 (https://www.consolut.com/en/s/sap-ides-access/ides-online-help-pdfs/; <a href="https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm">https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm</a>)
- 10. Purchasing (MM-PUR), Release 4.6C, SAP AG, 2001 (https://www.consolut.com/en/s/sap-ides-access/ides-online-help-pdfs/; https://help.sap.com/doc/saphelp\_46c/4.6C/en-US/e1/8e51341a06084de10000009b38f83b/frameset.htm)

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

To establish the contents of the courses and laboratories, meetings were organized with representatives from the local economic environment (Schaeffler Romania company) and from Germany (Schaeffler Germany). The meetings aimed to identify the needs and expectations of the employers who manage the entire organization (and integrate it with various partners / organizations) through ERP systems.

The content of the discipline is in accordance with the requirements of the companies and the acquired skills will be required for graduates who work in profile organizations, and not only, who use ERP (Enterprise Resource Planning) systems for the integrated management of the entire organization.

#### 10. Evaluation

| Activity type | 10.1 Evaluation criteria                           | 10.2 Evaluation methods       | 10.3 Percentage    |
|---------------|----------------------------------------------------|-------------------------------|--------------------|
|               |                                                    |                               | of the final grade |
| 10.4 Course   | Understanding the strategic implications of ERP    |                               |                    |
|               | systems                                            |                               |                    |
|               | Learning basic concepts in SAP ERP                 | its in SAP ERP                |                    |
|               | Knowing of the essential techniques of working in  | Written theoretical and       | 50%                |
|               | SAP ERP                                            | practical assessment          |                    |
|               | The ability to use and explain data related to SAP | ]                             |                    |
|               | ERP modules (SD, MM, PP, Purchasing)               |                               |                    |
| 10.5 Seminar/ | Practical application of the knowledge acquired    | Applications in CADIDEC       |                    |
| laboratory/   |                                                    | Applications in SAP IDES  ERP | 50%                |
| project       |                                                    | EKP                           |                    |

#### 10.6 Minimal performance standard

- Arguing the opportunity of implementing ERP systems for integrated management of organizations
- Knowing of the basics of the SAP ERP software system: basic concepts, navigation in the system, display of the basic data of the material and explanation of the significance of the most important fields in Production Planning
- Creating sales order, material planning by MRP running

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr. Ioan Călin ROȘCA,

Prof.dr. Maria Luminița SCUTARU,

Decan

Director de departament

Assoc.prof. Lucia-Antoneta CHICOS, PhD,

Assoc.prof. Lucia-Antoneta CHICOS, PhD,

Course holder

Holder of seminar/ laboratory/ project

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level choose from among: Bachelor / Master / Doctorat;
- <sup>3)</sup> Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | MASTER                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

### 2. Data about the course

| 2.1 Name of cour    | me of course Advanced design for engines systems |                      |                                 |                                  |   |            |                               |     |
|---------------------|--------------------------------------------------|----------------------|---------------------------------|----------------------------------|---|------------|-------------------------------|-----|
| 2.2 Course convenor |                                                  |                      | Pro                             | Professor PhD eng. Nicolae ISPAS |   |            |                               |     |
| 2.3 Seminar/ lab    | orato                                            | ry/ project convenor | Lecteur PhD eng. Sebastian RADU |                                  |   |            |                               |     |
| 2.4 Study year      | -                                                | 2.5 Semester         | Ш                               | 2.6 Evaluation                   | Ε | 2.7 Course | Content <sup>3)</sup>         | PC  |
|                     |                                                  |                      |                                 | type                             |   | status     | Attendance type <sup>4)</sup> | CPC |

## 3. Total estimated time (hours of teaching activities per semester)

| _                                                                                           |    | , ,                       |    |             |    |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|-------------|----|
| 3.1 Number of hours per week                                                                | 4  | out of which: 3.2 lecture | 2  | 3.3 Project | 2  |
| 3.4 Total number of hours in                                                                | 56 | out of which: 3.5 lecture | 28 | 3.6 Project | 28 |
| the curriculum                                                                              |    |                           |    |             |    |
| Time allocation                                                                             |    |                           |    |             |    |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |             | 28 |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |             |    |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    |             |    |
| Tutorial                                                                                    |    |                           |    |             | 10 |
| Examinations                                                                                |    |                           |    |             |    |
| Other activities                                                                            |    |                           |    |             |    |

| 3.7 Total number of hours of student activity | 69  |
|-----------------------------------------------|-----|
| 3.8 Total number per semester                 | 125 |
| 3.9 Number of credits <sup>5)</sup>           | 5   |

## 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Not provided in the curriculum                     |
|-------------------------|----------------------------------------------------|
| 4.2 competences-related | Production management previous knowledge           |
|                         | Designing specifically software advanced knowledge |

| 5.1 for course development   | Lectures are held in rooms with internet access and multimedia teaching        |
|------------------------------|--------------------------------------------------------------------------------|
|                              | equipment                                                                      |
| 5.2 for seminar/ laboratory/ | The project is carried out in rooms with internet access and computers equiped |
| project development          | with specific software.                                                        |

#### 6. Specific competences and learning outcomes

**Professional competences** 

**Transversal competences** 

| C' | 1. Ability to develop products and define criteria for selecting design solutions for propulsion systems |
|----|----------------------------------------------------------------------------------------------------------|
|    | R.Î.1.1. The graduate is able to devise sketches and design elements required to develop and communicate |
|    | design concepts;                                                                                         |
|    | R Î 1 2. The graduate can analyze the principles to be used in the development of technical designs      |

## R.I.1.2. The graduate can analyze the principles to be used in the development of technical designs

- C2. The ability to apply simulation and testing methods for propulsion systems and to use specialized design software (CAD/CAE)
  - R.Î.2.1. The graduate is able to simulate the behavior of propulsion system models based on specialized
  - R.Î.2.2. The graduate is able to develop test protocols and interpret and analyze data collected during testing in order to formulate conclusions and solutions.
  - R.Î.2.3. The graduate develops can design and realize prototypes for the evaluation of propulsion equipment tests;
  - R.Î.3.4. The graduate is able to perform cost and financial benefit analysis for a project over a given period

#### CT1. Define and/or use scientific concepts, theories and methods in mechanical engineering

- R.Î.1.1 The graduate is able to make appropriate use of specialized information in professional communication.
- R.Î.1.2 The graduate is able to apply acquired theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.
- R.Î.1.3 The graduate has the ability to coordinate the conception, calculation and design of a propulsion/mechanical system.

#### CT2. Autonomy and critical thinking

- R.Î.2.1 The graduate develops their own way of solving a task, working in a motivated manner with little or no supervision.
- R.Î.2.2 The graduate has autonomy in making technical or management decisions related to design activities
- R.Î.2.3 The graduate has the ability to assure the quality of a mechanical structure and mechanical product/system.
- R.Î.2.4 The graduate is able to develop strategies for effective and responsible work, applying the principles, rules and values of the code of professional ethics.
- R.Î.2.6 The graduate has the ability to objectively self-assess the need for lifelong learning, the use of information and communication in an international language in order to enter the labor market and to adapt continuously to its requirements.

### 7. Course objectives (resulting from the specific competences to be acquired)

| · · · · · · · · · · · · · · · · · · · |                                                                              |  |  |  |
|---------------------------------------|------------------------------------------------------------------------------|--|--|--|
| 7.1 General course objective          | To have advanced knowledge about design of the engines systems               |  |  |  |
|                                       | <ul> <li>To have advanced knowledge about exhaust gas treatment;</li> </ul>  |  |  |  |
|                                       | To have advanced knowledge about design of different parts of ICE;           |  |  |  |
|                                       | To have advanced knowledge about design of different new systems of engines. |  |  |  |
| 7.2 Specific objectives               | To be able to use different designing software                               |  |  |  |
|                                       | To be able to work in an advanced complex research team                      |  |  |  |

#### 8. Content

| 8.1 Course                                                                                                                                                                   | Teaching methods                                         | Number of hours | Remarks |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------|---------|
| 1. Advanced design of modern gas exchange system, variable distribution system, electrohydraulic distribution system design, variable compression engine design requirement. | Video projector<br>Black board<br>Short problems solving | 6 h             |         |

| 2. Advanced design of the SI engines fuelling system  |                        | 4 h |  |
|-------------------------------------------------------|------------------------|-----|--|
| 3. Advanced design of the GDI engines fuelling system |                        | 4 h |  |
| 4. Advanced design of the CI engines fuelling system  | Video projector        | 3 h |  |
| 5. Advanced design of the engines lubricating system  | Black board            | 2 h |  |
| 6. Advanced design of the engine supercharging system | Short problems solving | 4 h |  |
| 7. Advanced design of the engines cooling system      |                        | 2 h |  |
| 8. Modern design of the engine exhaust gas system     |                        | 3 h |  |
| after treatment                                       |                        |     |  |

- 1. Heywood, J., B. Internal Combustion Engine Fundamentals McGrew-Hill Book Company. 1988 ISBN 0- 070100499-8:
- 2. Benson, R., S., Whitehouse, N.,D. Internal combustion Engines Pergamon Press. 1979.ISBN 0-08-02271
- 3. Frank , W. (2012). Comparison of advanced waste heat recovery systems with a novel oil heating system. Australia.
- 4. Freymann, R., Ringler, J., Seifert, M., & Horst, T. (n.d.). The second generation turbosteamer. Munich.
- 5. Glavatskaya, Y., Gerard, O., Osoko, S. F., & Pierre, P. (n.d.). Heat recovery systems for passengers vehicles. Paris.
- 6. Jadhao, J., & Thombare, D. (2013). Review on exhaust gas heat recovery for I.C. engine.
- 7. Tianyou, W., YajunCofaru The turbosteamer: a system introducing the principle of cogeneration in automotive applications. (n.d.).
- 8. Ispas N..a. Proiectarea motoarelor pentru autovehicule. Universitatea Transilvania Braşov, 1997

| ·                                                         |                   |                 |         |
|-----------------------------------------------------------|-------------------|-----------------|---------|
| 8.2 Project                                               | Teaching-learning | Number of hours | Remarks |
|                                                           | methods           |                 |         |
| 1.Advanced design of modern gas exchange system, variable |                   |                 |         |
| distribution system, electrohydraulic distribution system |                   |                 |         |
| design, variable compression engine design requirement.   |                   |                 |         |
| 2. Advanced design of the SI engines fuelling system      |                   |                 |         |
| 3. Advanced design of the GDI engines fuelling system     | Project Solving   | 26 h            |         |
| 4. Advanced design of the CI engines fuelling system      | Evaluation        |                 |         |
| 5. Advanced design of the engines lubricating system      |                   |                 |         |
| 6. Advanced design of the engine supercharging system     |                   |                 |         |
| 7. Advanced design of the engines cooling system          |                   |                 |         |
| Project theme with one of seven engine System             |                   | 2 h             |         |
|                                                           |                   |                 |         |

#### Bibliography

- Heywood, J., B. Internal Combustion Engine Fundamentals McGrew-Hill Book Company. 1988 ISBNO-070100499-8;
- 2. Benson, R., S., Whitehouse, N.,D. Internal combustion Engines Pergamon Press. 1979.ISBN 0-08-02271
- 3. Jadhao, J., & Thombare, D. (2013). Review on exhaust gas heat recovery for I.C. engine.
- 4. Tianyou, W., YajunCofaru The turbosteamer: a system introducing the principle of cogeneration in automotive applications. (n.d.).
- 5. C. Ispas N..a. Proiectarea motoarelor pentru autovehicule. Universitatea Transilvania Braşov, 1997

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Requirements of the Romanian Society of Automotive Engineers (SIAR);

- Requirements of the Society of Automotive Engineers (SAE USA);
- SC SCHAEFER Romania SA;
- SC DACIA GROUP RENAULT SA;
- SC FORD Romania SA;

#### 10. Evaluation

|                                    | 10.2 Evaluation methods                                                                                                           | 10.3 Percentage                                                                                                                                 |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                                                                                   | of the final grade                                                                                                                              |
| Advanced skills and knowledge      | Written work                                                                                                                      | 60%                                                                                                                                             |
| regarding engines system designing |                                                                                                                                   |                                                                                                                                                 |
| Performing project solving         | Project solving                                                                                                                   | 40%                                                                                                                                             |
| Advanced skills and knowledge      | Written work                                                                                                                      | 60%                                                                                                                                             |
| regarding engines system designing |                                                                                                                                   |                                                                                                                                                 |
| Performing project solving         | Project solving                                                                                                                   | 40%                                                                                                                                             |
|                                    | regarding engines system designing  Performing project solving  Advanced skills and knowledge  regarding engines system designing | regarding engines system designing  Performing project solving  Advanced skills and knowledge  regarding engines system designing  Written work |

#### 10.6 Minimal performance standard

- Elaboration of a topic in the field involving a development / innovation activity
- Using advanced knowledge to solve an internal combustion engine system project
- Professional realization of a complex project on the calculation and modeling of an ICE system and 3D modeling of the specific assembly
- Exam and project marks must be higher than 5.

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof. PhD eng. Ioan Călin ROȘCA

Dean

**Head of Department** 

Prof. PhD eng. Nicolae Ispas

Lecturer PhD eng. Sebastian RADU

Prof. Phd eng. Maria Luminița SCUTARU

Course holder

Holder of seminar/ laboratory/ project

#### Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- <sup>3)</sup> Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | MASTER                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

### 2. Data about the course

| 2.1 Name of cour                 | se |                      | Technical analysis in mechanical engineering |                         |  |            |                               |       |
|----------------------------------|----|----------------------|----------------------------------------------|-------------------------|--|------------|-------------------------------|-------|
| 2.2 Course convenor              |    |                      | Phd. Eng. Doru GROZA                         |                         |  |            |                               |       |
| 2.3 Seminar/ laboratory/ project |    | Phd. Eng. Doru GROZA |                                              |                         |  |            |                               |       |
| convenor                         |    |                      |                                              |                         |  |            |                               |       |
| 2.4 Study year                   | I  | 2.5 Semester         | 2                                            | 2 2.6 Evaluation type E |  | 2.7 Course | Content <sup>3)</sup>         |       |
|                                  |    |                      |                                              |                         |  | status     | Attendance type <sup>4)</sup> | CPCPC |

## **3. Total estimated time** (hours of teaching activities per semester)

|                                                                                             |    | -                         |    |                                |         |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|--------------------------------|---------|
| 3.1 Number of hours per week                                                                | 4  | out of which: 3.2 lecture | 2  | 3.3 Seminar/laborator/proiect  | 0/1/1   |
| 3.4 Total number of hours in                                                                | 56 | out of which: 3.5 lecture | 28 | 3.6. Seminar/laborator/proiect | 0/14/14 |
| the curriculum                                                                              |    |                           |    |                                |         |
| Time allocation                                                                             |    |                           |    |                                |         |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |                                | 25      |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |                                | 16      |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    |                                | 20      |
| Tutorial                                                                                    |    |                           |    |                                | 5       |
| Examinations                                                                                |    |                           |    |                                | 3       |
| Other activities                                                                            |    |                           |    |                                |         |
|                                                                                             |    |                           |    |                                |         |

| 3.7 Total number of individual learning hours |   |
|-----------------------------------------------|---|
| 3.8 Total number per semester                 |   |
| 3.9 Number of credits <sup>4)</sup>           | 5 |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Basic knowledge of mechanical engineering and manufacturing |
|-------------------------|-------------------------------------------------------------|
| 4.2 competences-related | Technical abilities                                         |

# **5. Conditions** (if applicable)

| 5.1 for course development   | Lectures are held in rooms with internet access and multimedia teaching |
|------------------------------|-------------------------------------------------------------------------|
|                              | equipment                                                               |
| 5.2 for seminar/ laboratory/ | The laboratory is carried out in the frame of Schaeffler company        |
| project development          |                                                                         |

F03.1-PS7.2-01/ed.3, rev.3

# 6. Specific competences

|                             | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems   |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| nal<br>ces                  | L.O.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate        |  |  |  |
| Professional<br>competences | design concepts;                                                                                            |  |  |  |
| ofes<br>npe                 | L.O.1.2. The graduate can analyze the principles that must be used in the development of technical projects |  |  |  |
| Profe<br>comp               | L.O.1.3. The graduate can use the technical documentation in the technical process, in general and, in      |  |  |  |
|                             | particular, for the realization of propulsion systems;                                                      |  |  |  |
|                             | C2. The ability to apply simulation and testing methods for propulsion systems and to use specialized       |  |  |  |
|                             | programs for design (CAD/CAE)                                                                               |  |  |  |
|                             | L.O.2.1. The graduate can simulate the behavior of propulsion system models based on specialized            |  |  |  |
| S                           | software;                                                                                                   |  |  |  |
| Transversal competences     | L.O.2.2. The graduate can develop test protocols and interpret and analyze data collected during testing to |  |  |  |
| pet                         | formulate conclusions and solutions.                                                                        |  |  |  |
| E                           | L.O.2.3. The graduate can develop, design and make prototypes for the evaluation of propulsion equipment    |  |  |  |
| ial c                       | tests;                                                                                                      |  |  |  |
| vers                        | L.O.2.4. The graduate can use assisted engineering software specific to the design of propulsion systems    |  |  |  |
| ans                         | (dedicated software for CAE).                                                                               |  |  |  |
| <u> </u>                    | L.O.2.5. The graduate can use computer-aided design systems (dedicated CAD software);                       |  |  |  |

# **7. Course objectives** (resulting from the specific competences to be acquired)

|                         | •                                                                                 |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------|--|--|--|
| 7.1 General course      | The course aim is to provide the basics of technical analysis method that lead to |  |  |  |
| objective               | establishment of optimization measures for new products                           |  |  |  |
| 7.2 Specific objectives | Students will acquire cognitive skills, such as:                                  |  |  |  |
|                         | To do prototype parts analysis for development of products based on various       |  |  |  |
|                         | methods;                                                                          |  |  |  |
|                         | To do correlation of results obtained from tests with product specifications      |  |  |  |
|                         | To do statistical analysis of data                                                |  |  |  |

# 8. Content

| 8.1 Course                                                                 | Teaching           | Number   | Remarks |
|----------------------------------------------------------------------------|--------------------|----------|---------|
|                                                                            | methods            | of hours |         |
| Chapter 1 - Prototype parts analysis of the development of products        |                    |          |         |
| using various methods (measurements of geometric and material              |                    | 10h      |         |
| property determination, analysis wear by various optical methods, etc.).   |                    |          |         |
| Chapter 2 - Correlation of results obtained from tests with product        | Interactive        | 6h       |         |
| specifications for the establishment of optimization measures              | course,            |          |         |
| Chapter 3 - Competitive product analysis activities and establishing       | debates, case      | 4h       |         |
| product development strategy.                                              | studies            |          |         |
| Chapter 4 - Product testing following factors durability and functionality |                    | 4h       |         |
| of products and mechatronic systems                                        |                    |          |         |
| Chapter 5 - Statistical analysis of data                                   |                    | 4h       |         |
| Bibliography                                                               |                    |          |         |
| Documentation provided by the company Schaeffler Romania                   |                    |          |         |
| 8.2 Laboratory                                                             | Teaching-          | Number   | Remarks |
|                                                                            | learning methods   | of hours |         |
| 1. Measurements of geometric and material property determination,          |                    | 4h       |         |
| analysis wear by various optical methods.                                  | Dractical activity |          |         |
| 2. Correlation of results obtained from tests with product specifications  | Practical activuty | 2h       |         |
| 3. Establishing product development strategy. Case of study                |                    | 4h       |         |

F03.1-PS7.2-01/ed.3, rev.3

| 4. Statistical analysis of data                                         |                  | 4h       |         |
|-------------------------------------------------------------------------|------------------|----------|---------|
| Bibliography                                                            |                  |          |         |
| Documentation provided by the company Schaeffler Romania                |                  |          |         |
| 8.3 Project                                                             | Teaching-        | Number   | Remarks |
|                                                                         | learning methods | of hours |         |
| 1. Define the subject of the project                                    |                  | 2h       |         |
| 2. Prototype parts analysis of the development of products – types of   |                  | 2h       |         |
| measurements                                                            | Debates          |          |         |
| 3. Correlation analysis of the obtained results from tests with product |                  | 4h       |         |
| specifications for the establishment of optimization measures           |                  |          |         |
| 4. Data analysis                                                        |                  | 4h       |         |
| 5. Project presentation                                                 |                  | 2h       |         |
| Bibliography                                                            |                  | •        |         |
| Documentation provided by the company Schaeffler Romania                |                  |          |         |

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The graduate students will be able to do technical analysis in the company where they are employed.

#### 10. Evaluation

| Activity type                   | 10.1 Evaluation criteria    | 10.2 Evaluation methods | 10.3 Percentage    |
|---------------------------------|-----------------------------|-------------------------|--------------------|
|                                 |                             |                         | of the final grade |
| 10.4 Course                     | Correct use and application | Written evaluation      | 60%                |
|                                 | of key theoretical concepts |                         |                    |
| 10.5 Project                    | Project evaluation          | Disscusion              | 40%                |
| 10.6 Minimal performance standa | rd                          |                         |                    |
|                                 |                             |                         |                    |

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.ing. Ioan Călin, ROȘCA

Dean

dr. ing. Doru GROZA,

Prof.dr.ing. Maria Luminița, SCUTARU

Head of Department dr. ing. Doru GROZA,

Holder of laboratory and project

# Course holder

Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- 2) Study level *choose from among:* BA/MA/PhD.;
- Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/
  SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course)

Course status (attendance type) – select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-

F03.1-P57.2-01/ed.3, rev.3

compulsory course);

One credit is the equivalent of 25 – 30 study hours (teaching activities and individual study).

F03.1-PS7.2-01/ed.3, rev.3

# 1. Data about the study programme

| 1.1 Higher education institution        | Transilvania University of Brasov                              |
|-----------------------------------------|----------------------------------------------------------------|
| 1.2 Faculty                             | Mechanical Engineering                                         |
| 1.3 Department                          | Mechanical Engineering                                         |
| 1.4 Field of study Master <sup>1)</sup> | Mechanical Engineering                                         |
| 1.5 Study level <sup>2)</sup>           | Master                                                         |
| 1.6 Study programme/ Qualification      | Integrated Practical Methods in Propulsion Systems Engineering |

### 2. Data about the course

| 2.1 Name of course                        |   | Des          | Design for manufacturing  |                                     |   |            |                               |    |  |
|-------------------------------------------|---|--------------|---------------------------|-------------------------------------|---|------------|-------------------------------|----|--|
| 2.2 Course convenor                       |   |              | Pro                       | Prof. dr. eng. Mircea Viorel DRĂGOI |   |            |                               |    |  |
| 2.3 Seminar/ laboratory/ project convenor |   | Lec          | Lect. dr. eng. Sever HABA |                                     |   |            |                               |    |  |
| 2.4 Study year                            | I | 2.5 Semester | П                         | 2.6 Evaluation                      | Ε | 2.7 Course | Content <sup>3)</sup>         | DS |  |
|                                           |   |              |                           | type                                |   | status     | Attendance type <sup>4)</sup> | DO |  |

# 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 1 Number of hours per week 2 out of whic |  | 1  | 3.3 seminar/ laboratory/ project | 0/0/1  |
|---------------------------------------------------------------------------------------------|------------------------------------------|--|----|----------------------------------|--------|
| 3.4 Total number of hours in                                                                | Total number of hours in 28 out          |  | 14 | 3.6 seminar/ laboratory/ project | 0/0/14 |
| the curriculum                                                                              |                                          |  |    |                                  |        |
| Time allocation                                                                             |                                          |  |    |                                  |        |
| Study of textbooks, course support, bibliography and notes                                  |                                          |  |    |                                  |        |
| Additional documentation in libraries, specialized electronic platforms, and field research |                                          |  |    |                                  | 14     |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |                                          |  |    |                                  | 42     |
| Tutorial                                                                                    |                                          |  |    |                                  |        |
| Examinations                                                                                |                                          |  |    |                                  |        |
| Other activities                                                                            |                                          |  |    |                                  |        |

| 3.7 Total number of hours of student activity |     |  |  |
|-----------------------------------------------|-----|--|--|
| 3.8 Total number per semester                 | 100 |  |  |
| 3.9 Number of credits <sup>5)</sup>           | 4   |  |  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | • | Manufacturing technologies, Tolerances.                                              |  |  |  |
|-------------------------|---|--------------------------------------------------------------------------------------|--|--|--|
| 4.2 competences-related |   | Ccrrelating the knowledge, principles, and methods in technical sciences of the      |  |  |  |
|                         |   | study domain with graphical representations, to solve the specific tasks             |  |  |  |
| Using the               |   | Using the software applications and digital technologies to solve the specific tasks |  |  |  |
|                         |   | of mechanical engineering, in general, and particularly for CAD of products.         |  |  |  |

| 5.1 for course development                       | Computer and beamer                      |
|--------------------------------------------------|------------------------------------------|
| 5.2 for seminar/ laboratory/ project development | Beamer, computers, and specific software |

#### 6. Specific competences

|              |             | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems  |
|--------------|-------------|------------------------------------------------------------------------------------------------------------|
| la l         | ces         | LO.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate        |
| Professional | competences | design concepts;                                                                                           |
| ofes         | npe         | LO.1.2. The graduate can analyze the principles that must be used in the development of technical projects |
| ᇫ            | CO          | LO.1.3. The graduate can use the technical documentation in the technical process, in general and, in      |
|              |             | particular, for the realization of propulsion systems;                                                     |
| Transversal  | competences |                                                                                                            |

### 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course      | The advanced knowing and applying by students the principles of design for                   |
|-------------------------|----------------------------------------------------------------------------------------------|
| objective               | manufacturing                                                                                |
| 7.2 Specific objectives | Knowing the basic criteria the defining of machinability of the industrial parts is based on |
|                         | Knowing and application of the principles of designing the allowances and surface quality    |
|                         | Correct handling of the concepts of part family and group technology                         |
|                         | Knowing and applying correctly the principles of pats design to be manufactured by           |
|                         | additive technologies                                                                        |

#### 8. Content

| 8.1 Course                                      | Teaching methods             | Number of hours | Remarks |
|-------------------------------------------------|------------------------------|-----------------|---------|
| DFM Principles                                  | Presentation                 | 1               |         |
| Concurrent/simultaneous engineering             |                              | 1               |         |
| Particularities of designing parts for additive | Presentation + Case study    | ,               |         |
| technologies                                    |                              | 4               |         |
| The ISO system of deviations and allowances     | Presentation + Conversation, | 4               |         |
| Design of fits                                  | Demonstration, Exercises,    | 2               |         |
| Dimensional chains and dimensioning the         | Debate                       | 2               |         |
| assemblies                                      |                              | 2               |         |

#### Bibliography

- 1. Molloy, O., Warman, E.A., Tilley, S., Design for Manufacturing and Assembly Concepts, architectures and implementation, 1998, XVII, eBook. 205 p. ISBN 978-1-4615-5785-2
- 2. Boothroyd, G., Dewhurst, P., Knight, W. K., Product Design for Manufacture and Assembly, Third Edition (Manufacturing Engineering and Materials Processing) Hardcover December 8, 2010, ISBN-13: 978-1420089271 ISBN-10: 1420089277 Edition: 3<sup>rd</sup>
- 3. Anderson, D. M., Design for Manufacturability: How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production Hardcover February 4, 2014, ISBN-13: 000-1482204924 ISBN-10: 1482204924 Edition: 1st
- 4. <a href="http://me.gatech.edu/files/capstone/L071ME4182DFA">http://me.gatech.edu/files/capstone/L071ME4182DFA</a>
- 5. <a href="http://www.calpoly.edu/~fowen/me428/Design%20for%20Manual%20Assembly%20Lecture%20Rev%204.pdf">http://www.calpoly.edu/~fowen/me428/Design%20for%20Manual%20Assembly%20Lecture%20Rev%204.pdf</a>
- 6. <a href="http://www.design-iv.com">http://www.design-iv.com</a>
- 7. <a href="http://designengineusa.com/storage/design\_for\_manufacture\_and\_assembly.pdf">http://designengineusa.com/storage/design\_for\_manufacture\_and\_assembly.pdf</a>

| 8.2. Project                                     | Teaching methods      | Number of hours | Remarks |
|--------------------------------------------------|-----------------------|-----------------|---------|
| The project subjects are oriented to designing a | Individual work under |                 |         |
| part according to DFM principles and taking into | assistance            | 14              |         |
| account the machinability criteria               |                       |                 |         |

- 1. Molloy, O., Warman, E.A., Tilley, S., Design for Manufacturing and Assembly Concepts, architectures and implementation, 1998, XVII, eBook. 205 p. ISBN 978-1-4615-5785-2
- Boothroyd, G., Dewhurst, P., Knight, W. K., Product Design for Manufacture and Assembly, Third Edition (Manufacturing Engineering and Materials Processing) Hardcover – December 8, 2010, ISBN-13: 978-1420089271 ISBN-10: 1420089277 Edition: 3<sup>rd</sup>
- 3. Anderson, D. M., Design for Manufacturability: How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production Hardcover February 4, 2014, ISBN-13: 000-1482204924 ISBN-10: 1482204924 Edition: 1st

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of the subject meet the requirements of the companies from Braşov region on the graduate of the study program

#### 10. Evaluation

| Activity type                                                                                         | 10.1 Evaluation criteria                                                              | 10.2 Evaluation                         | 10.3 Percentage    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|--------------------|--|--|--|--|
|                                                                                                       |                                                                                       | methods                                 | of the final grade |  |  |  |  |
| 10.4 Course                                                                                           | Applying the dimensioning principles of individual parts and fits, dimensional chains | Written assessment with objective items | 25%                |  |  |  |  |
| 10.5 Seminar/ laboratory/                                                                             | Project evaluation                                                                    | Defending the project                   | 50%                |  |  |  |  |
| project                                                                                               | Application. Design of allowances and fits                                            | Solving problems                        | 25%                |  |  |  |  |
| 10.6 Minimal performance standard                                                                     |                                                                                       |                                         |                    |  |  |  |  |
| Solving a problem clearly defined (analysys of situation) of an average complexity in the area of DFM |                                                                                       |                                         |                    |  |  |  |  |

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024

Prof. dr. ing. Călin Ioan ROȘCA

Dean

Prof. dr. ing. Mircea-Viorel DRĂGOI

Head of Department

Şef lucr. dr. ing . Sever HABA

Prof. dr. ing. Luminița Maria SCUTARU

Course holder Holder of seminar/ laboratory/ proiect

#### Note:

1) Field of study – select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);

- <sup>2)</sup> Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

# 1. Data about the study programme

| 1.1 Higher education institution        | Transilvania University of Brasov                              |  |  |
|-----------------------------------------|----------------------------------------------------------------|--|--|
| 1.2 Faculty                             | Mechanical Engineering                                         |  |  |
| 1.3 Department                          | Mechanical Engineering                                         |  |  |
| 1.4 Field of study Master <sup>1)</sup> | Mechanical Engineering                                         |  |  |
| 1.5 Study level <sup>2)</sup>           | Master                                                         |  |  |
| 1.6 Study programme/ Qualification      | Integrated Practical Methods in Propulsion Systems Engineering |  |  |
|                                         | (English)                                                      |  |  |

#### 2. Data about the course

| 2.1 Name of course                        |  |     | Computer Aided Numerical Control    |                                     |            |                       |                               |    |  |
|-------------------------------------------|--|-----|-------------------------------------|-------------------------------------|------------|-----------------------|-------------------------------|----|--|
| 2.2 Course convenor                       |  |     | Pro                                 | Prof. dr. eng. Mircea Viorel DRĂGOI |            |                       |                               |    |  |
| 2.3 Seminar/ laboratory/ project convenor |  | Pro | Prof. dr. eng. Mircea Viorel DRĂGOI |                                     |            |                       |                               |    |  |
| 2.4 Study year I 2.5 Semester             |  | П   | 2.6 Evaluation                      | Ε                                   | 2.7 Course | Content <sup>3)</sup> | SC                            |    |  |
|                                           |  |     |                                     | type                                |            | status                | Attendance type <sup>4)</sup> | EC |  |

3. Total estimated time (hours of teaching activities per semester)

|                                                                                             | _                                                                                 | T                         |   |                          |       |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|---|--------------------------|-------|
| 3.1 Number of hours per week                                                                | 2                                                                                 | out of which: 3.2 lecture | 1 | 3.3 seminar/ laboratory/ | 0/0/1 |
|                                                                                             |                                                                                   |                           |   | project                  |       |
| 3.4 Total number of hours in                                                                | Total number of hours in 28 out of which: 3.5 lecture 14 3.6 seminar/ laboratory/ |                           |   |                          |       |
| the curriculum                                                                              |                                                                                   |                           |   | project                  |       |
| Time allocation                                                                             |                                                                                   |                           |   |                          |       |
| Study of textbooks, course support, bibliography and notes                                  |                                                                                   |                           |   |                          | 14    |
| Additional documentation in libraries, specialized electronic platforms, and field research |                                                                                   |                           |   |                          | 14    |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |                                                                                   |                           |   |                          | 42    |
| Tutorial                                                                                    |                                                                                   |                           |   |                          | 0     |
| Examinations                                                                                |                                                                                   |                           |   |                          | 2     |
| Other activities                                                                            |                                                                                   |                           |   |                          | -     |
|                                                                                             |                                                                                   |                           |   |                          |       |

| 3.7 Total number of hours of student activity |     |
|-----------------------------------------------|-----|
| 3.8 Total number per semester                 | 100 |
| 3.9 Number of credits <sup>5)</sup>           | 4   |

## 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Manufacturing technologies,.                                                |
|-------------------------|-----------------------------------------------------------------------------|
| 4.2 competences-related | Use of software packages to apply principles and methods from the technical |
|                         | sciences of the field                                                       |

| 5.1 for course development   | Computer and beamer                                                             |
|------------------------------|---------------------------------------------------------------------------------|
| '                            |                                                                                 |
| 5.2 for seminar/ laboratory/ | <ul> <li>Computer, Beamer, laboratory endowed with CNC machine-tools</li> </ul> |
| project development          |                                                                                 |

#### 6. Specific competences

|              | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems      |
|--------------|----------------------------------------------------------------------------------------------------------------|
|              | R.Î.1.1. The graduate can design sketches and design elements necessary for the development and                |
| rofessional  | communication of design concepts;                                                                              |
| SSio         | R.Î.1.2. The graduate can analyze the principles to be used in the development of technical projects           |
| Professional | R.Î.1.3. The graduate can use technical documentation in the technical process, in general and, in particular, |
| Pr           | for the realization of propulsion systems;                                                                     |
|              |                                                                                                                |
| la 2         |                                                                                                                |
| Transversal  |                                                                                                                |
| ans          |                                                                                                                |
| <u> </u>     |                                                                                                                |

#### 7. Course objectives (resulting from the specific competences to be acquired)

|                              | •                                                                   |
|------------------------------|---------------------------------------------------------------------|
| 7.1 General course objective | Advanced knowledge and application by students of the principles of |
|                              | programming numerically controlled machine tools                    |
| 7.2 Specific objectives      | Knowledge and application of the principles of the technology of    |
|                              | manufacturing parts manufacturing                                   |
|                              | Correct handling of G functions                                     |

#### 8. Content

| 8.1 Course                                     | Teaching methods                                              | Number of hours | Remarks |
|------------------------------------------------|---------------------------------------------------------------|-----------------|---------|
| Presentation of course objectives, general and |                                                               | 1               |         |
| introductory concepts, definitions             |                                                               | I               |         |
| CNC equipment classification                   | Presentation                                                  | 1               |         |
| Coordinate systems SCMU, CSP                   | Donas de tiene Cara de de                                     | 2               |         |
| Organization of numerical control files        | Presentation + Case study                                     | 1               |         |
| Classification of addresses/functions          | Dragontation . Convergation                                   | I               |         |
| Geometric addresses, technological             | Presentation + Conversation, Demonstration, Exercises, Debate | 1               |         |
| addresses, other addresses                     | Demonstration, Exercises, Debate                              | I               |         |
| G codes                                        |                                                               | 6               |         |
| Drilling cycles                                |                                                               | 2               |         |

#### Bibliography

- 1. \*\*\* The CNC Milling machine NOVAMILL CNC. User's Manual (electronic format)
- 2. DRĂGOI M. V. .Computer aided numerical control. Course notes 2020-2024.
- 3. CNC macining cente Victor VC55 User's manual.
- 4. Course support in electronic format available on E-learning platform of Transilvania University of Braşov
- 5. STENERSON, J., CURRAN, K., Computer Numerical Control: Operation and Programming. Prentice Hall, 2007
- 6. http://www.pantura-project.eu/Downloads/Application\_of\_a\_Design\_Method\_for\_Manufacture\_and\_Assembly\_WP4\_Master's%20
  Thesis%20201229.pdf http://designengineusa.com/storage/design\_for\_manufacture\_and\_assembly.pdf

| 8.2. Project                                  | Teaching methods                 | Number of hours | Remarks |
|-----------------------------------------------|----------------------------------|-----------------|---------|
| The project subjects are oriented towards the |                                  |                 |         |
| development of manufacturing technology       | Individual work under assistance | 14              |         |
| and numerical control programs for milling    |                                  | 14              |         |
| processing of medium complexity parts.        |                                  |                 |         |

- 1. \*\*\* The CNC Milling machine NOVAMILL CNC. User's Manual (electronic format)
- 2. DRĂGOI M. V. . Computer aided numerical control. Course notes 2020-2024.
- 3. CNC macining cente Victor VC55 User's manual.
- 4. Course support in electronic format available on E-learning platform of Transilvania University of Braşov
- 5. STENERSON, J., CURRAN, K., Computer Numerical Control: Operation and Programming. Prentice Hall, 2007
- 6. http://www.pantura-project.eu/Downloads/Application\_of\_a\_Design\_Method\_for\_Manufacture\_and\_Assembly\_WP4\_Master's%20
  Thesis%20201229.pdf http://designengineusa.com/storage/design\_for\_manufacture\_and\_assembly.pdf

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of the subject meet the requirements of the companies from Braşov region on the graduate of the study program

#### 10. Evaluation

| 10.1 Evaluation criteria                        | 10.2 Evaluation methods                                                                                                                                                          | 10.3 Percentage                                                                                                                                                                                                                        |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                                                                                                                                                                                  | of the final grade                                                                                                                                                                                                                     |
| Assessment of the ability to synthesize         | Written assesment                                                                                                                                                                | 35%                                                                                                                                                                                                                                    |
| knowledge from various chapters                 |                                                                                                                                                                                  |                                                                                                                                                                                                                                        |
| Assessment of the ability to use theoretical    | Written assesment                                                                                                                                                                | 15%                                                                                                                                                                                                                                    |
| knowledge                                       |                                                                                                                                                                                  |                                                                                                                                                                                                                                        |
| Application. Development of a numerical control | Written assesment                                                                                                                                                                | 50%                                                                                                                                                                                                                                    |
| program for contouring by milling               |                                                                                                                                                                                  |                                                                                                                                                                                                                                        |
|                                                 | Assessment of the ability to synthesize knowledge from various chapters  Assessment of the ability to use theoretical knowledge  Application. Development of a numerical control | Assessment of the ability to synthesize Written assesment knowledge from various chapters  Assessment of the ability to use theoretical Written assesment knowledge  Application. Development of a numerical control Written assesment |

#### 10.6 Minimal performance standard

• Basic use of theoretical knowledge for developing numerical control programs (minimum grade 5 in the project evaluation)

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024

Prof. dr. ing. Călin Ioan ROȘCA

Dean

Prof. dr. ing. Mircea-Viorel DRĂGOI

Course holder

Prof. dr. ing. Luminița Maria SCUTARU

**Head of Department** 

Prof. dr. ing. Mircea-Viorel DRĂGOI

Holder of seminar/ laboratory/ project

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | MASTER                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

## 2. Data about the course

| 2.1 Name of cour                            | se   |              | Professional intership |                |   |            |                               |     |
|---------------------------------------------|------|--------------|------------------------|----------------|---|------------|-------------------------------|-----|
| 2.2 Course conve                            | enor |              |                        |                |   |            |                               |     |
| 2.3 <del>Seminar/ laboratory/</del> project |      |              |                        |                | • |            |                               |     |
| convenor                                    |      |              |                        |                |   |            |                               |     |
| 2.4 Study year                              | Ι    | 2.5 Semester | 2                      | 2.6 Evaluation | С | 2.7 Course | Content <sup>3)</sup>         | PC  |
|                                             |      |              |                        | type           |   | status     | Attendance type <sup>4)</sup> | CPC |

## **3. Total estimated time** (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 12  | out of which: | 3.3 Project  | 12  |
|---------------------------------------------------------------------------------------------|-----|---------------|--------------|-----|
|                                                                                             |     | 3.2 lecture   |              |     |
| 3.4 Total number of hours in                                                                | 168 | out of which: | 3.6. Project | 168 |
| the curriculum                                                                              |     | 3.5 lecture   |              |     |
| Time allocation                                                                             |     |               |              |     |
| Study of textbooks, course support, bibliography and notes                                  |     |               |              | -   |
| Additional documentation in libraries, specialized electronic platforms, and field research |     |               |              | 50  |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |     |               |              | 70  |
| Tutorial                                                                                    |     |               |              | 28  |
| Examinations                                                                                |     |               |              |     |
| Other activities                                                                            |     |               |              | 20  |
|                                                                                             |     |               |              | 1   |

| 3.7 Total number of individual learning hours |   |  |  |  |  |
|-----------------------------------------------|---|--|--|--|--|
| 3.8 Total number per semester                 | - |  |  |  |  |
| 3.9 Number of credits <sup>4)</sup>           | 6 |  |  |  |  |

## 4. Prerequisites (if applicable)

| 4.1 curriculum-related  |                           |
|-------------------------|---------------------------|
| 4.2 competences-related | To be able to do projects |

# **5. Conditions** (if applicable)

| 5.1 for course development   |                                                                                |
|------------------------------|--------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | In the University laboratories and in the frame of Schaeffler Romania Company. |
| project development          |                                                                                |

F03.2-PS7.2-01/ed.3, rev.6

### 6. Specific competences

|                         | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems      |
|-------------------------|----------------------------------------------------------------------------------------------------------------|
| lar<br>Ces              | L.O.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate           |
| sior                    | design concepts;                                                                                               |
| Professional            | L.O.1.2. The graduate can analyze the principles that must be used in the development of technical projects    |
| P. O                    | L.O.1.3. The graduate can use the technical documentation in the technical process, in general and, in         |
|                         | particular, for the realization of propulsion systems;                                                         |
|                         | CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering |
| sal<br>ces              | L.O.1.1 The graduate can adequately use specialized information in professional communication.                 |
| Transversal competences | L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology       |
| ans                     | in the field of mechanical engineering.                                                                        |
|                         | L.O.1.3 The graduate has the ability to coordinate the activity of conception, calculation and design of a     |
|                         | propulsion system/mechanical system.                                                                           |

## **7. Course objectives** (resulting from the specific competences to be acquired)

|                         | 7.1 General course objective | To do a project / semester that demonstrate engineering skills acquired during the first year semester |
|-------------------------|------------------------------|--------------------------------------------------------------------------------------------------------|
| 7.2 Specific objectives |                              | Improving knowledge acquired in the two semesters of the first year                                    |

#### 8. Content

| 8.1 Project                                           | Teaching methods        | Remarks |
|-------------------------------------------------------|-------------------------|---------|
| Identify issues for project practice                  |                         |         |
| Establishing project design practice                  |                         |         |
| Identification of development directions of the theme | Individual or team work |         |
| Analysis of the actual situation                      |                         |         |
| Determination of the solutions encountered problems   |                         |         |
| Presentation of projects                              |                         |         |

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The topic is made with the company Schaeffler Romania is centered on a theme of its own

#### 10. Evaluation

| Activity type                                                                      | 10.1 Evaluation criteria | 10.2 Evaluation methods | 10.3 Percentage    |  |  |  |
|------------------------------------------------------------------------------------|--------------------------|-------------------------|--------------------|--|--|--|
|                                                                                    |                          |                         | of the final grade |  |  |  |
| 10.4 Course                                                                        |                          |                         |                    |  |  |  |
| 10.5 Project Scientofic level of the project Oral presentation                     |                          | 100%                    |                    |  |  |  |
| 10.6 Minimal performance standard                                                  |                          |                         |                    |  |  |  |
| Students must prove, by design, the properties of terms and technical foundations. |                          |                         |                    |  |  |  |

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

F03.2-PS7.2-01/ed.3, rev.6

Prof.dr.ing. Ioan Călin, ROSCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

**Head of Department** 

Course holder Holder of project

Not the case Individual holder

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution      | Transylvania University of Brasov                   |
|---------------------------------------|-----------------------------------------------------|
| 1.2 Faculty Mechanical Engineering    |                                                     |
| 1.3 Department Mechanical engineering |                                                     |
| 1.4 Field of study <sup>1)</sup>      | Mechanical engineering                              |
| 1.5 Study level <sup>2)</sup>         | Master                                              |
| 1.6 Study programme/ Qualification    | Practical methods in propulsion systems engineering |

### 2. Data about the course

| 2.1 Name of course                        |                              |   | А                             | Advanced Manufacturing Technology |            |                       |                    |  |  |
|-------------------------------------------|------------------------------|---|-------------------------------|-----------------------------------|------------|-----------------------|--------------------|--|--|
| 2.2 Course convenor                       |                              |   | C                             | Conf.dr.ing.Lepadatescu Badea     |            |                       |                    |  |  |
| 2.3 Seminar/ laboratory/ project convenor |                              | С | Conf.dr.ing.Lepadatescu Badea |                                   |            |                       |                    |  |  |
| CPC2.4 Study                              | CPC2.4 Study II 2.5 Semester |   | I 2.6 Evaluation type E       | Ε                                 | 2.7 Course | Content <sup>3)</sup> | Ac                 |  |  |
| year                                      |                              |   |                               |                                   | status     | Attendance            | CPC                |  |  |
|                                           |                              |   |                               |                                   |            |                       | type <sup>4)</sup> |  |  |

# 3. Total estimated time (hours of teaching activities per semester)

|                                                                                             |    | <u>.</u>                  |    |             |       |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|-------------|-------|
| 3.1 Number of hours per week                                                                | 4  | out of which: 3.2 lecture | 2  | 3.3 Project | 2     |
| 3.4 Total number of hours in                                                                | 56 | out of which: 3.5 lecture | 28 | 3.6 Project | 28    |
| the curriculum                                                                              |    |                           |    |             |       |
| Time allocation                                                                             |    |                           |    |             | hours |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |             |       |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |             |       |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    |             |       |
| Tutorial                                                                                    |    |                           |    |             |       |
| Examinations                                                                                |    |                           |    |             | 4     |
| Other activities                                                                            |    |                           |    |             |       |

| 3.7 Total number of hours of student activity |     |  |
|-----------------------------------------------|-----|--|
| 3.8 Total number per semester                 | 125 |  |
| 3.9 Number of credits <sup>5)</sup>           | 5   |  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Technical drawing. Tolerances and fits. Devices. Machine to | ol. |
|-------------------------|-------------------------------------------------------------|-----|
| 4.2 competences-related | Design of road vehicle manufacturing technologies           |     |

| 5.1 for course development   | Classroom with blackboard and video projector                                      |
|------------------------------|------------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | • Laboratory room with technological equipment related to manufacturing processes. |
| project development          | Guidelines for design and laboratory                                               |

# 6. Specific competences and learning outcomes

| Professional competences | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems  R.Î.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate design concepts;  R.Î.1.2. The graduate can analyze the principles that must be used in the development of technical projects  R.Î.1.3. The graduate can use the technical documentation in the technical process, in general and, in particular, for the realization of propulsion systems;  C2. The ability to apply simulation and testing methods for propulsion systems and to use specialized programs for design (CAD/CAE)  R.Î.2.1. The graduate can simulate the behavior of propulsion system models based on specialized software;  R.Î.2.2. The graduate can develop test protocols and interpret and analyze data collected during testing to |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | formulate conclusions and solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | R.Î.2.3. The graduate can develop, design and make prototypes for the evaluation of propulsion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | equipment tests;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | R.Î.1.1 The graduate can adequately use specialized information in professional communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| es                       | R.Î.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ence                     | R.Î.1.3 The graduate has the ability to coordinate the activity of conception, calculation and design of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| pet                      | propulsion system/mechanical system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| СОП                      | CT2. Autonomy and critical thinking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| rsal                     | R.Î.2.1 The graduate develops his own way of solving a task, working motivated, with little or no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Isve                     | supervision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Transversal competences  | R.Î.2.2 The graduate has autonomy in making technical decisions or those related to the management of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | design activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | R.Î.2.3 The graduate has the ability to ensure the quality of a mechanical structure and mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | product/system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course objective | Assimilation and application of the knowledge and terminology specific to the                                              |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                              | design of the technological processes of machining operations for various parts                                            |  |  |  |
|                              | of the components of motor vehicles.                                                                                       |  |  |  |
| 7.2 Specific objectives      | <ul> <li>Defining and acquiring the concepts and terminology specific to the design of<br/>machining operations</li> </ul> |  |  |  |
|                              | Choosing the optimal processing option; Designing plans for machining                                                      |  |  |  |
|                              | operations.                                                                                                                |  |  |  |

## 8. Content

| 8.1 Course                              | Teaching methods             | Number of hours | Remarks |
|-----------------------------------------|------------------------------|-----------------|---------|
| 1. Flow forming                         |                              | 2               |         |
| 2. Flow drilling                        |                              | 2               |         |
| 3. Thread forming                       |                              | 2               |         |
| 4. Roller burnishing                    | Exposure, interactive course | 2               |         |
| 5. Superfinishing manufacturing process |                              | 2               |         |
| 6. Honing manufacturing process         |                              | 2               |         |
| 7. Shaving manufacturing process        |                              | 2               |         |

| 8. Lapping manufacturing process        |                              | 2 |  |
|-----------------------------------------|------------------------------|---|--|
| 9. Centreless grinding                  |                              | 2 |  |
| 10. Plastic forming of spline shafts    |                              | 2 |  |
| 11. Grinding by RON- Centric technology |                              | 2 |  |
| 12. Gear manufacturing by cold forming  | Exposure, interactive course | 2 |  |
| 13. Laser honing process                |                              | 2 |  |
| 14. Skiving and roller burnishing.      |                              | 2 |  |

- 1. Lepădătescu, B., Zeleniuc O., Material removal processes and machines. Editura Universitatii Transilvania din Brasov, 2010.
- 2. Lepădătescu, B., Simon, A.E. Vehicles manufacturing. Editura Universitatii Transilvania din Brasov, 2006.
- 3. Lepădătescu, B; Popa Luminita; Buzatu Constantin. Automatizarea Proceselor Tehnologice Industriale. Editura MATRIX ROM, Bucuresti, 2015.

| 8.2 Project                                             | Teaching-learning methods | Number of hours | Remarks |
|---------------------------------------------------------|---------------------------|-----------------|---------|
| 1. Establishment of technical conditions of dimensional |                           |                 |         |
| and geometric precision of some specific parts of the   |                           | 6               |         |
| automotive industry                                     | Lecture + conversation.   |                 |         |
| 2. Establish succession (possible variants) of the      | Independent study.        |                 |         |
| operations / processing phases for machining a          | Group consultations.      | 8               |         |
| workpiece of automotive industry                        | Conversation +            |                 |         |
| 3. Technological design calculations (stock removal,    | argumentation.            | 8               |         |
| cutting parameters, machining time).                    | Final drafting            |                 |         |
| 4. Designing the operating plan for machining           |                           |                 |         |
| operations for a workpiece from motor vehicle           |                           | 6               |         |
| component.                                              |                           |                 |         |

#### Bibliography

- 1. Picos, C., Coman, Gh., Dobre, N., Pruteanu, O., Rusu, C., Trufinescu, St. Normarea tehnica pentru prelucrari prin aschiere. Vol.1 si 2. Editura Tehnica, Bucuresti, 1982.
- 2. Vlase, A., Sturzu, A., Mihail, A., Bercea, I. Regimuri de aschiere, adaosuri de prelucrare si norme tehnice de timp. Editura Tehnica, Bucuresti, 1985.
- 3. Draghici, G., Buzatu, C. Indrumar pentru lucrari practice de laborator TCM. Editura Uniuversitatii din Brasov, 1978.
- 4. Buzatu, C., Lepadatescu, B. Tehnologii si echipamente de fabricatie. Indrumar de laborator. Universitatea Transilvania din Brasov, 1999

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

- The course is in line with the current national and international development and evolution requirements of higher technical engineering in mechanical engineering.
- The curriculum course is integrated into the engineering programs associated with mechanical engineering and is
  correlated with similar study programs in European universities. To obtain a good insertion of the graduates in the
  profile companies, their structure and the suggestions from INA SCHAFFLER Brasov with which the university
  collaborates.
- Ensure the competent students and abilities in accordance with the provisions of the National Qualifications Framework in higher education through a suitable scientific and technical training at the master level, allowing the gradual insertion of graduates into the labour market, as well as the possibility of continuing studies through doctoral programs.
- The study program is part of Transylvania University Brasov's policy and strategy regarding the professional training mission, both in terms of its structure and content, following the international developments and standards, as well as the approach of a rigorous, efficient and effective work strategy responsible.

#### 10. Evaluation

| Activity type 10.1 Evaluation criteria |                                                         | 10.2 Evaluation methods       | 10.3 Percentage    |  |  |  |
|----------------------------------------|---------------------------------------------------------|-------------------------------|--------------------|--|--|--|
|                                        |                                                         |                               | of the final grade |  |  |  |
| 10.4 Course                            | 1. Assimilation of specific concepts and terms          |                               |                    |  |  |  |
|                                        | used in the design of technological processes.          |                               |                    |  |  |  |
|                                        | 2. Correct explanation of technological processes       |                               |                    |  |  |  |
|                                        | for processing products from the automotive             | Written evaluation based      | 50%                |  |  |  |
|                                        | industry.                                               | on subjective items.          |                    |  |  |  |
|                                        | 3. Comparative analysis of possible technological       |                               |                    |  |  |  |
|                                        | processes to be used under given conditions             |                               |                    |  |  |  |
|                                        | Present at the course                                   | It is recorded at the course. | 10%                |  |  |  |
| 10.5 Project                           | 1. Appropriate use of concepts and terminology          | Exposure, application         |                    |  |  |  |
|                                        | specific to the course.                                 | activity.                     |                    |  |  |  |
|                                        | 2. Correct argumentation of solutions and results       | Problem solving.              | 40%                |  |  |  |
|                                        | obtained in design.                                     | Writing of the project +      |                    |  |  |  |
|                                        |                                                         | argumentation of used         |                    |  |  |  |
|                                        |                                                         | solutions                     |                    |  |  |  |
|                                        |                                                         |                               |                    |  |  |  |
| 10.6 Minimal per                       | rformance standard                                      |                               |                    |  |  |  |
| • Dovolon a the                        | ome in the field that involves development / innovation | n activity                    | ·                  |  |  |  |

• Develop a theme in the field that involves development / innovation activity.

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Calin ROSCA

D 3500

Prof.dr.ing.habil Maria Luminita SCUTARU

Dean

**Head of Department** 

Conf.dr.ing.Badea LEPADATESCU

Conf.dr.ing Badea LEPADATESCU

Course holder

Lendle-B-le

Holder of project

Lendre-B-le

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes)
- 2) Study level choose from among: Bachelor / Master / Doctorat
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course)
- <sup>4)</sup> Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course)
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brasov                              |
|------------------------------------|----------------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                                         |
| 1.3 Department                     | Mechanical Engineering                                         |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                                         |
| 1.5 Study level <sup>2)</sup>      | Master                                                         |
| 1.6 Study programme/ Qualification | Practical methods integrated in propulsion systems engineering |

#### 2. Data about the course

| 2.1 Name of course               |   | Aut          | Automation in Manufacturing |                     |   |            |                               |     |
|----------------------------------|---|--------------|-----------------------------|---------------------|---|------------|-------------------------------|-----|
| 2.2 Course convenor              |   | Lep          | Lepadatescu Badea           |                     |   |            |                               |     |
| 2.3 Seminar/ laboratory/ project |   | Lep          | adatescu Badea              |                     |   |            |                               |     |
| convenor                         |   |              |                             |                     |   |            |                               |     |
| 2.4 Study year                   | П | 2.5 Semester | 1                           | 2.6 Evaluation type | E | 2.7 Course | Content <sup>3)</sup>         | AC  |
|                                  |   |              |                             |                     |   | status     | Attendance type <sup>4)</sup> | CPC |

### 3. Total estimated time (hours of teaching activities per semester)

|                                                                                             |    | -                         |    |                |       |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|----------------|-------|
| 3.1 Number of hours per week 3                                                              |    | out of which: 3.2 lecture | 2  | 3.3 Laboratory | 1     |
| 3.4 Total number of hours in                                                                | 42 | out of which: 3.5 lecture | 28 | 3.6 Laboratory | 14    |
| the curriculum                                                                              |    |                           |    |                |       |
| Time allocation                                                                             |    |                           |    |                | hours |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |                | 20    |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |                | 30    |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    | 20             |       |
| Tutorial                                                                                    |    |                           |    | 10             |       |
| Examinations                                                                                |    |                           |    |                | 3     |
| Other activities                                                                            |    |                           |    |                |       |
|                                                                                             |    |                           |    |                |       |

| 3.7 Total number of hours of student activity |  |  |
|-----------------------------------------------|--|--|
| 3.8 Total number per semester                 |  |  |
| 3.9 Number of credits <sup>5)</sup>           |  |  |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | • | Manufacturing Technology; Automation in Manufacturing Technology.                 |  |  |
|-------------------------|---|-----------------------------------------------------------------------------------|--|--|
| 4.2 competences-related | • | Appropriate use of fundamental concepts in the field of motor vehicle engineering |  |  |
|                         | • | Design and automation of manufacturing technologies for road vehicles             |  |  |

| 5.1 for course development   | Classroom with blackboard and video projector                                    |
|------------------------------|----------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | Laboratory room with blackboard; Apparatus and devices used in the automation of |
| project development          | technological processes; Laboratory guideline                                    |

# 6. Specific competences and learning outcomes

|                          | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems      |
|--------------------------|----------------------------------------------------------------------------------------------------------------|
|                          | L.O.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate           |
|                          | design concepts;                                                                                               |
| Sept                     | L.O.1.2. The graduate can analyze the principles that must be used in the development of technical projects    |
| eter                     | L.O.1.3. The graduate can use the technical documentation in the technical process, in general and, in         |
| ш                        | particular, for the realization of propulsion systems;                                                         |
| 0                        | C2. The ability to apply simulation and testing methods for propulsion systems and to use specialized programs |
| iona                     | for design (CAD/CAE)                                                                                           |
| ess                      | L.O.2.1. The graduate can simulate the behavior of propulsion system models based on specialized software;     |
| Professional competences | L.O.2.2. The graduate can develop test protocols and interpret and analyze data collected during testing to    |
|                          | formulate conclusions and solutions.                                                                           |
|                          | L.O.2.3. The graduate can develop, design and make prototypes for the evaluation of propulsion equipment       |
|                          | tests;                                                                                                         |
|                          | CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering |
|                          | L.O.1.1 The graduate can adequately use specialized information in professional communication.                 |
| es                       | L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology       |
| enc                      | in the field of mechanical engineering.                                                                        |
| ıpet                     | L.O.1.3 The graduate has the ability to coordinate the activity of conception, calculation and design of a     |
| corr                     | propulsion system/mechanical system.                                                                           |
| salı                     | CT2. Autonomy and critical thinking                                                                            |
| Transversal competences  | L.O.2.1 The graduate develops his own way of solving a task, working motivated, with little or no supervision. |
| rans                     | L.O.2.2 The graduate has autonomy in making technical decisions or those related to the management of          |
| F                        | design activities                                                                                              |
|                          | L.O.2.3 The graduate has the ability to ensure the quality of a mechanical structure and mechanical            |
| l                        | product/system.                                                                                                |

# 7. Course objectives (resulting from the specific competences to be acquired)

|                         | 0 1 1 1                                                                                 |  |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 7.1 General course      | Assimilation and application of knowledge and terminology specific to the design and    |  |  |  |  |  |  |
| objective               | verification of systems for the automation of manufacturing technologies for components |  |  |  |  |  |  |
|                         | in road vehicles                                                                        |  |  |  |  |  |  |
| 7.2 Specific objectives | Definition of processing and control elements of process automation elements            |  |  |  |  |  |  |
|                         | Study of electro pneumatic controls in automation of technologies on production lines   |  |  |  |  |  |  |
|                         | Using the automatic feeding of small workpieces for machine tools                       |  |  |  |  |  |  |
|                         | Examples of automation of technological processes for parts of motor vehicle            |  |  |  |  |  |  |
|                         | components.                                                                             |  |  |  |  |  |  |

## 8. Content

| 8.1 Course                                                   | Teaching methods      | Number of hours | Remarks |
|--------------------------------------------------------------|-----------------------|-----------------|---------|
| 1. Energy sources used in automation of technological        | Lecture, Case studies |                 |         |
| processes. 1.1 Advantages of using compressed air. 1.2       | Debates on specific   | 2               |         |
| Compressed air supply; 1.3 Preparation of compressed air     | issues                |                 |         |
| 2. Symbols and notations used in pneumatics. 2.1             | Lecture, Case studies |                 |         |
| Structure of a planetary scheme; 2.2 Classification of       | Debates on specific   | 2               |         |
| kinematic schemes; 2.3 Cycle of a cinematic scheme           | issues                |                 |         |
| 3. Control elements used in the automation of technological  | Lecture, Case studies |                 |         |
| processes. 3.1 Pneumatic distributors; 3.2 Classification of | Debates on specific   | 2               |         |
| distributors; 3.3 Shock absorbers.                           | issues                |                 |         |

|                                                                     |                       | T |  |
|---------------------------------------------------------------------|-----------------------|---|--|
| 4. Processing elements for automation of technological              | Lecture, Case studies |   |  |
| processes. 4.1 Selection valves; 4.2 Combined valves; 4.3           | Debates on specific   | 2 |  |
| Timing valves                                                       | issues                |   |  |
| <b>5. Control of actuators in automation systems.</b> 5.1 Direct    | Lecture, Case studies |   |  |
| command; 5.2 Indirect command; 5.3 Modular automatic                | Debates on specific   | 2 |  |
| processing units                                                    | issues                |   |  |
| 6. Execution elements used in the automation of parts               |                       |   |  |
| manufacturing. 6.1 Linear pneumatic engine; 6.2 Pneumatic           | Lecture, Case studies |   |  |
| rotary motors; 6.3 Pneumatic separators; 6.4 Fluid muscles;         | Debates on specific   | 2 |  |
| 6.5 Indexable rotary tables; 6.6 Handling and assembly              | issues                | _ |  |
| modules                                                             | 133463                |   |  |
| <b>7 Handling elements.</b> 7.1 Grippers; 7.2 Vacuum handling       | Lecture, Case studies |   |  |
| equipment                                                           | Debates on specific   | 2 |  |
| equipment                                                           | ·                     | 2 |  |
| O Flature was the same to the saturation of                         | issues                |   |  |
| 8. Electropneumatic control in the automation of                    | Lostumo Casa atrodico | 3 |  |
| <b>technological processes.</b> 8.1 the chain of command; 8.2       | Lecture, Case studies | 2 |  |
| Switches and switches; 8.3 Switching, time and pressure             | Debates on specific   |   |  |
| relays; 8.4 Electrical control of distributors; 8.5 Logical         | issues                |   |  |
| operators                                                           |                       |   |  |
| 9. Elements of electromechanical execution in the                   |                       |   |  |
| <b>automation of technological processes.</b> 9.1 Rotary            |                       |   |  |
| electrical module; 9.2 Rotary electrical linear mode; 9.3           | Lecture, Case studies | 2 |  |
| Electric cylinder with guide screw; 9.4 Electric powered            | Debates on specific   |   |  |
| mini- 9.5 Motor shafts with toothed belt and console; 9.6           | issues                |   |  |
| Linear electric mode; 9.7 Linear motor electric cylinder            |                       |   |  |
| 10. Automation of semi-finished machine supply of                   | Lecture, Case studies |   |  |
| machine tools. 10.1 Selecting power systems; 10.2 Flexible          | Debates on specific   | 2 |  |
| guidance and feeding systems; 10.3 Bunker feeding                   | issues                |   |  |
| devices; 10.4 Parts orientation technology                          |                       |   |  |
| 11. Optical processing in the automation of technological           |                       |   |  |
| <b>processes.</b> 11.1 Orientation of parts using optical detection |                       |   |  |
| technology; 11.2 Detection devices; 11.3 Programming of             | Lecture, Case studies | 2 |  |
| optical detection of orientation and sorting devices; 11.4          | Debates on specific   |   |  |
| Orientation and sorting of mixed parts; 11.5 Optical                | issues                |   |  |
| processing systems.                                                 |                       |   |  |
| 12. The GRAFCET concept used in the automation of                   |                       |   |  |
| technological processes. 12.1 Simulation and evolution of a         | Lecture, Case studies |   |  |
| GRAFCET; The basic structure of a GRAFCET; 12.2 Particular          | Debates on specific   | 2 |  |
| configurations; 12.3 GRAFCET equations; 12.4 GRAFCET                | issues                | - |  |
| Cases                                                               | 133463                |   |  |
| 13. Ladder language used in the automation of                       | Lecture, Case studies | 2 |  |
| technological processes. 13.1 Introduction; 13.2 Creating a         | Debates on specific   | _ |  |
| Program Line; 13.3 Ladder connections; 13.4 Ladder                  | issues                |   |  |
| <del>-</del>                                                        | เรรนชร                |   |  |
| application examples                                                | Lastina Carristi      | 2 |  |
| 14. Examples of automation applications in manufacturing            | Lecture, Case studies | 2 |  |
| processes.                                                          | Debates on specific   |   |  |
|                                                                     | issues                |   |  |

- 1. Lepadatescu, B; Popa Luminita; Buzatu Constantin., Automatizarea Proceselor Tehnologice Industriale. Editura MATRIX ROM, Bucuresti, 2015.
- 2. Chiriacescu, S, T., Automatizarea proceselor tehnologice. Editura Universitatii din Brasov, 1975.
- 3. Hanganut, M., Automatica. Editura didactica si pedagogica, Bucuresti, 1971.

| 8.2 Laboratory                                              | Teaching-learning   | Number of hours | Remarks |
|-------------------------------------------------------------|---------------------|-----------------|---------|
|                                                             | methods             |                 |         |
| 1. Automate the sorting of parts by an external dimension   |                     | 2               |         |
| 2. Automated control and sorting by size groups             | Individual          | 2               |         |
| 3. Study of systems for the simulation of the automation of | measurements;       | 2               |         |
| the semi-finished food supply in pieces of the machine      | Problem solving;    |                 |         |
| tools                                                       | Conversations and   |                 |         |
| 4. Automatic machine tool feeding                           | experimenting       | 2               |         |
| 5. Simulate the operation of a flexible manufacturing       | individually and in | 2               |         |
| system                                                      | small groups        |                 |         |
| 6. Model for the study and simulation of electric actuators | Self-evaluation and | 2               |         |
| and servomotors                                             | inter-evaluation    |                 |         |
|                                                             |                     |                 |         |
| 7. Distribution, testing and processing station             |                     | 2               |         |

#### Bibliography

- 1. Lepadatescu, B; Buztau, C., Automatizarea Proceselor Tehnologice. Indrumar de laborator; Universitatea Transilvania din Brasov, 2016.
- 2. Buzatu, C., Automatizarea si robotizarea proceselor tehnologice. Universitatea din Brasov, 1988.
- 3. Spineanu, U., Automatizarea controlului dimensiunilor in constructia de masini. Editura Tehnica, Bucuresti, 1987.

# 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical and applied knowledge base the newest approaches in designing the automation of technological processes, and the practical examples are based on representative types of products specific to vehicle motors.

#### 10. Evaluation

| Activity type | 10.1 Evaluation criteria                 | 10.2 Evaluation methods             | 10.3 Percentage    |
|---------------|------------------------------------------|-------------------------------------|--------------------|
|               |                                          |                                     | of the final grade |
| 10.4 Course   | Correct explanation of specific design   | Written evaluation with subjective  | 15%                |
|               | situations for the automation of         | items                               |                    |
|               | technological processes                  | Essays on concrete topics           |                    |
|               | Correct explanation of the operation of  | Problem solving.                    | 15%                |
|               | some measurement and control             |                                     |                    |
|               | automation systems                       |                                     |                    |
|               | Problem solving                          |                                     | 10%                |
|               | Recognizing some elements of             |                                     | 10%                |
|               | symbolizing the automation of            |                                     |                    |
|               | technological processes in the technical |                                     |                    |
|               | drawing.                                 |                                     |                    |
|               | Present at the course                    | It is recorded during the semester. | 10%                |

| 10.5 Laboratory                                                 | Appropriate use of concepts specific to the | Individual activity of using | 20% |  |  |  |  |
|-----------------------------------------------------------------|---------------------------------------------|------------------------------|-----|--|--|--|--|
|                                                                 | automation of technological processes       | automation elements          |     |  |  |  |  |
|                                                                 | Applying individual and group work          | Problem solving              | 20% |  |  |  |  |
| techniques in automation of                                     |                                             |                              |     |  |  |  |  |
|                                                                 | manufacturing technologies.                 |                              |     |  |  |  |  |
| 10.6 Minimal performance standard                               |                                             |                              |     |  |  |  |  |
| Operations with theoretical and applied concepts of the course. |                                             |                              |     |  |  |  |  |

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

**Head of Department** 

Conf.dr.ing. Badea LEPADATESCU

Conf.dr.ing. Badea LEPADATESCU

Lendole-B-les Course holder

9800

Holder of Laboratory

Lendole-Balo

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes)
- 2) Study level choose from among: Bachelor / Master / Doctorat
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course)
- <sup>4)</sup> Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course)
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

## 1. Data about the study programme

| 1.1 Higher education institution        | Transilvania University of Brasov                                               |
|-----------------------------------------|---------------------------------------------------------------------------------|
| 1.2 Faculty                             | Mechanical Engineering                                                          |
| 1.3 Department                          | Mechanical Engineering                                                          |
| 1.4 Field of study Master <sup>1)</sup> | Mechanical engineering                                                          |
| 1.5 Study level <sup>2)</sup>           | Master                                                                          |
| 1.6 Study programme/ Qualification      | Metode practice integrate în ingineria sistemelor de propulsie (RO) / Integrate |
|                                         | practical methods in propulsion systems engineering (EN)                        |

#### 2. Data about the course

| 2.1 Name of course               |          |     | Prod                                   | duct Development |            |                               |     |  |
|----------------------------------|----------|-----|----------------------------------------|------------------|------------|-------------------------------|-----|--|
| 2.2 Course convenor              |          | Lec | Lecturer Phd.eng. HABA Sever-Alexandru |                  |            |                               |     |  |
| 2.3 Seminar/ laboratory/ project |          | Lec | Lecturer Phd.eng. HABA Sever-Alexandru |                  |            |                               |     |  |
| convenor                         | convenor |     |                                        |                  |            |                               |     |  |
| 2.4 Study year II 2.5 Semester   |          | 1   | 2.6 Evaluation type                    | E                | 2.7 Course | Content <sup>3)</sup>         | SC  |  |
|                                  |          |     |                                        |                  | status     | Attendance type <sup>4)</sup> | CPC |  |

# 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 3  | out of which: 3.2 lecture | 2  | 3.3 seminar/ laboratory/ project | 1     |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|----------------------------------|-------|
| 3.4 Total number of hours in                                                                | 42 | out of which: 3.5 lecture | 28 | 3.6 seminar/ laboratory/ project | 14    |
| the curriculum                                                                              |    |                           |    |                                  |       |
| Time allocation                                                                             |    |                           |    |                                  | hours |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |                                  |       |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    |                                  |       |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    |                                  | 42    |
| Tutorial                                                                                    |    |                           |    |                                  |       |
| Examinations                                                                                |    |                           |    |                                  |       |
| Other activities                                                                            |    |                           |    |                                  |       |

| 3.7 Total number of hours of student activity |     |
|-----------------------------------------------|-----|
| 3.8 Total number per semester                 | 125 |
| 3.9 Number of credits <sup>5)</sup>           | 5   |

# 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Bachelor's degree in engineering                                                  |
|-------------------------|-----------------------------------------------------------------------------------|
| 4.2 competences-related | Associating knowledge, principles and methods from the technical sciences of the  |
|                         | field with graphic representations for solving specific tasks                     |
|                         | Use of software applications and digital technologies to solve tasks specific to  |
|                         | industrial engineering, in general, and for assisted product design in particular |

| 5.1 for course development   | Classroom with computer and video projector                                      |
|------------------------------|----------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | Laboratory with video projector, computers, appropriate software and study parts |
| project development          | from automotive engineering                                                      |

# 6. Specific competences

|                             |                  | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems  |
|-----------------------------|------------------|------------------------------------------------------------------------------------------------------------|
| Professional<br>competences | ces              | LO.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate        |
|                             | design concepts; |                                                                                                            |
|                             | npe              | LO.1.2. The graduate can analyze the principles that must be used in the development of technical projects |
|                             | 5                | LO.1.3. The graduate can use the technical documentation in the technical process, in general and, in      |
|                             |                  | particular, for the realization of propulsion systems;                                                     |
| ences                       |                  | CT2. Autonomy and critical thinking                                                                        |
|                             |                  | L.O.2.1 The graduate develops his own way of solving a task, working motivated, with little or no          |
|                             |                  | supervision.                                                                                               |
|                             |                  | L.O.2.2 The graduate has autonomy in making technical decisions or those related to the management of      |
| pet                         |                  | design activities                                                                                          |
| Transversal competences     |                  | L.O.2.3 The graduate has the ability to ensure the quality of a mechanical structure and mechanical        |
|                             |                  | product/system.                                                                                            |
|                             |                  | L.O.2.4 The graduate can develop efficient and responsible work strategies, applying the principles, norms |
|                             |                  | and values of the code of professional ethics.                                                             |
|                             |                  | L.O.2.5 The graduate has the ability to objectively self-assess the need for lifelong training, the use of |
|                             |                  | information and communication in an international language for the purpose of insertion into the labor     |
|                             |                  | market and continuous adaptation to its requirements.                                                      |

# 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course                                                                                   | The graduate can analyze the principles that must be used in the development of           |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| objective                                                                                            | technical projects                                                                        |  |
| 7.2 Specific objectives • Advanced knowledge and application by students of the principles of Integr |                                                                                           |  |
|                                                                                                      | and Manufacture of Industrial Products                                                    |  |
|                                                                                                      | Knowledge and application of specific design norms as well as legal provisions            |  |
|                                                                                                      | Identifying from the concept phase and optimizing the main areas of industrial parts that |  |
|                                                                                                      | can generate increased technological manufacturing costs                                  |  |

## 8. Content

| 8.1 Course                                        | Teaching methods       | Number of | Remarks             |
|---------------------------------------------------|------------------------|-----------|---------------------|
|                                                   |                        | hours     |                     |
| Introductory elements                             | Lecture + case study + | 2         | Lecture based on    |
|                                                   | debate                 |           | slides              |
| Industrial products made of injected              | Lecture + case study + | 2         | Lecture based on    |
| plastics/injected light alloys.v                  | debate                 |           | slides and pieces   |
|                                                   |                        |           | from the laboratory |
| The temporary stages of development of the        | Lecture + case study + | 2         | Lecture based on    |
| design and manufacture of an industrial product   | debate                 |           | slides              |
| Introduction to the manufacture of parts made of  | Lecture + case study + | 2         | Lecture based on    |
| thermoplastic materials injected into molds       | debate                 |           | slides              |
| Production of injected plastic parts from the     | Lecture + case study + | 2         | Lecture based on    |
| automotive field (specific conditions for visible | debate                 |           | slides              |
| parts and functional parts)                       |                        |           |                     |
| Making parts of the passenger compartment of      | Lecture + case study + | 2         | Lecture based on    |
| cars: additional technologies                     | debate                 |           | slides              |

| Lecture + case study + | 2                                                                                                                                                                                                                               | Lecture based on                                                                                                                                                                                                                                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| debate                 |                                                                                                                                                                                                                                 | slides                                                                                                                                                                                                                                                                 |
|                        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
|                        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
| Lecture + case study + | 2                                                                                                                                                                                                                               | Lecture based on                                                                                                                                                                                                                                                       |
| debate                 |                                                                                                                                                                                                                                 | slides                                                                                                                                                                                                                                                                 |
| Lecture + case study + | 2                                                                                                                                                                                                                               | Lecture based on                                                                                                                                                                                                                                                       |
| debate                 |                                                                                                                                                                                                                                 | slides                                                                                                                                                                                                                                                                 |
| Lecture + case study + | 2                                                                                                                                                                                                                               | Lecture based on                                                                                                                                                                                                                                                       |
| debate                 |                                                                                                                                                                                                                                 | slides and pieces                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                                                 | from the laboratory                                                                                                                                                                                                                                                    |
| Lecture + case study + | 2                                                                                                                                                                                                                               | Lecture based on                                                                                                                                                                                                                                                       |
| debate                 |                                                                                                                                                                                                                                 | slides                                                                                                                                                                                                                                                                 |
| Lecture + case study + | 2                                                                                                                                                                                                                               | Lecture based on                                                                                                                                                                                                                                                       |
| debate                 |                                                                                                                                                                                                                                 | slides and pieces                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                                                 | from the laboratory                                                                                                                                                                                                                                                    |
| Lecture + case study + | 2                                                                                                                                                                                                                               | Lecture based on                                                                                                                                                                                                                                                       |
| debate                 |                                                                                                                                                                                                                                 | slides and pieces                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                                                 | from the laboratory                                                                                                                                                                                                                                                    |
| Lecture + case study + | 2                                                                                                                                                                                                                               | Lecture based on                                                                                                                                                                                                                                                       |
| debate                 |                                                                                                                                                                                                                                 | slides                                                                                                                                                                                                                                                                 |
|                        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
|                        | debate  Lecture + case study + debate | Lecture + case study + 2 debate  Lecture + case study + 2 debate |

- 1. MARCU, T., (2007), Modern technologies and practices in the design of complex products, Computer Press Agora, 2007
- 2. FILIPESCU, A., (2009), Digital prototypes in mechanical design, <u>www.cadware-eng.ro</u>
- 3. \*\*\*, (2010), Selective LASER Melting (SLM) of pure gold, Gold Buletin, 2010, Volume 43, Number 2, p. 114-121, http://springerlink.com
- 4. BONDREA, I., (2005), Computerer aided design using Catia V5, Publishing house Alma Mater, Sibiu, 2005, ISBN: 97-632 255 6
- 5. PETER, H., (2008), Rapid Prototyping & Manufacturing Research,
- www.student.tue.nl/q/p.r.hermans

- 6. Technology EDM <a href="http://sodick-edm.ro">http://sodick-edm.ro</a>
- 7. Rapid Precision Prototyping http://protcast.com
- 8. http://injectionmoldingmold.wholesale.wneducation.com
- 9. <a href="http://www.redecos.in/dfm.html">http://www.redecos.in/dfm.html</a>
- 10. www.unitedbmw.com/detail-2019-bmw-7\_series
- 11. www.draexlmaier.com/produkte/interieur/konsolen
- 12. www.3dhubs.com/knowledge-base/introduction-fdm-3d-printing

| 8.2 Seminar/ laboratory/ project                     | Teaching-learning methods | Number of | Remarks          |
|------------------------------------------------------|---------------------------|-----------|------------------|
|                                                      |                           | hours     |                  |
| Proposals for drawing up the specifications related  | Case study + debate       | 1         | Lecture based on |
| to the industrial product to be produced             |                           |           | slides and       |
|                                                      |                           |           | laboratory parts |
| Analysis of the geometry imposed by the customer,    | Case study + debate       | 1         | Lecture based on |
| establishment of the main technical characteristics, |                           |           | slides and       |
| Establishment of the manufacturing technology,       |                           |           | laboratory parts |
| Establishment of the main dangerous areas            |                           |           |                  |

| The establishment of the main dangerous areas that from the concept phase must be optimized so as not to lead to risks for the manufacturer of this | Case study + debate                     | 1 | Lecture based on<br>slides and<br>laboratory parts |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|----------------------------------------------------|
| part;                                                                                                                                               |                                         |   | laboratory parts                                   |
| Establishing the main operating characteristics for                                                                                                 | Case study + debate                     | 1 | Lecture based on                                   |
| the assembly of an electrically operated curtain on                                                                                                 |                                         |   | slides and                                         |
| the rear door;                                                                                                                                      |                                         |   | laboratory parts                                   |
| Analysis of the geometry of the inner door panel                                                                                                    | Case study + debate                     | 1 | Lecture based on                                   |
| type piece, establishing the main technical                                                                                                         | , , , , , , , , , , , , , , , , , , , , |   | slides and                                         |
| characteristics, Establishing the manufacturing                                                                                                     |                                         |   | laboratory parts                                   |
| technology                                                                                                                                          |                                         |   | / 1                                                |
| Establishing the main operating characteristics for                                                                                                 | Case study + debate                     | 1 | Lecture based on                                   |
| the assembly of a central console for a motor                                                                                                       | ,                                       |   | slides and                                         |
| vehicle;                                                                                                                                            |                                         |   | laboratory parts                                   |
| Analysis of the geometry of the box assembly part                                                                                                   | Case study + debate                     | 1 | Lecture based on                                   |
| of the central console of the vehicle, establishing                                                                                                 | ·                                       |   | slides and                                         |
| the main technical characteristics, Establishing the                                                                                                |                                         |   | laboratory parts                                   |
| manufacturing technology                                                                                                                            |                                         |   |                                                    |
| The stages of designing the geometry of a part                                                                                                      | Case study + debate                     | 1 | Lecture based on                                   |
| made of injected plastics from the field of motor                                                                                                   |                                         |   | slides and                                         |
| vehicles - the part with visible surfaces such as the                                                                                               |                                         |   | laboratory parts                                   |
| Instrument Panel in the area of the Dashboard of a                                                                                                  |                                         |   |                                                    |
| motor vehicle.                                                                                                                                      |                                         |   |                                                    |
| The stages of designing the geometry of a part                                                                                                      | Case study + debate                     | 1 | Lecture based on                                   |
| made of injected plastics from the field of motor                                                                                                   |                                         |   | slides and                                         |
| vehicles - the functional part of the type Guide for                                                                                                |                                         |   | laboratory parts                                   |
| the control cable                                                                                                                                   |                                         |   |                                                    |
| Analysis of the geometry of the Air Nozzle                                                                                                          | Case study + debate                     | 1 | Lecture based on                                   |
| Ornament type piece                                                                                                                                 |                                         |   | slides and                                         |
|                                                                                                                                                     |                                         |   | laboratory parts                                   |
| Analysis of the geometry of the piston part for                                                                                                     | Case study + debate                     | 1 | Lecture based on                                   |
| spark ignition engines, establishing the main                                                                                                       |                                         |   | slides and                                         |
| technical characteristics                                                                                                                           |                                         |   | laboratory parts                                   |
| The stages of designing the geometry of a part                                                                                                      | Case study + debate                     | 1 | Lecture based on                                   |
| made of injected plastics from the field of motor                                                                                                   |                                         |   | slides and                                         |
| vehicles - the functional part of the type Guide for                                                                                                |                                         |   | laboratory parts                                   |
| the control cable.                                                                                                                                  |                                         |   |                                                    |
| Establishing the main operating characteristics for                                                                                                 | Case study + debate                     | 1 | Lecture based on                                   |
| the assembly of a fuzeta assembly                                                                                                                   |                                         |   | slides and                                         |
|                                                                                                                                                     |                                         |   | laboratory parts                                   |
| Establishing the main operating characteristics of                                                                                                  | Case study + debate                     | 1 | Lecture based on                                   |
| an oversized bearing;                                                                                                                               |                                         |   | slides and                                         |
|                                                                                                                                                     |                                         |   | laboratory parts                                   |

#### Bibliography

- 1. <u>www.casio.com/products/watches/g-shock</u>
- 2. <u>www.minott-center.com</u>
- 3. <u>www.unitedbmw.com/detail-2019-bmw-7\_series</u>
- 4. <u>www.draexlmaier.com/produkte/interieur</u>

- 5. <u>www.macauto-group.com/automotive-interiors-macauto</u>
- 6. <u>www.alfaromeousaofevanston.com</u>
- 7. www.autobics.com/2018/02/2018-maserati-levante
- 8. <u>www.acornbearings.co.uk</u>

## 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of the discipline meet the request of the companies in the Braşov industrial area regarding the skills expected of the graduates of the study program in respect of the principles of design oriented towards the manufacture of industrial parts.

#### 10. Evaluation

| Activity type             | 10.1 Evaluation criteria             | 10.2 Evaluation methods         | 10.3 Percentage    |
|---------------------------|--------------------------------------|---------------------------------|--------------------|
|                           |                                      |                                 | of the final grade |
| 10.4 Course               | Evaluarea nivelului de cunostiinte   | Oral evaluation with subjective | 50%                |
|                           | privind Dezvoltarea de produse       | items, applied individually     |                    |
|                           | industriale                          |                                 |                    |
| 10.5 Seminar/ laboratory/ | Establishing the main operating      | Oral evaluation with subjective | 50%                |
| project                   | characteristics for an industrial    | items, applied individually     |                    |
|                           | product                              |                                 |                    |
|                           | Evaluation of the level of knowledge | Oral evaluation with subjective | 50%                |
|                           | regarding the Development of         | items, applied individually     |                    |
|                           | industrial products                  |                                 |                    |

#### 10.6 Minimal performance standard

- Solving a well-defined theme in the field of design and manufacture of industrial products, of medium complexity.
- Carrying out the analysis of the parts geometry as well as finding design and manufacturing solutions.

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof. dr. ing. Călin Ioan ROȘCA

Dean

Ph.D.eng. Sever-Alexandru HABA

Prof. dr. ing. Luminița Maria SCUTARU

**Head of Department** 

Ph.D.eng. Sever-Alexandru HABA

Course holder

Holder of seminar/ laboratory/ project

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;

- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

#### 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brasov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | Master                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

#### 2. Data about the course

| 2.1 Name of course                        |   | Pro          | ject management                            |                     |             |            |                               |     |
|-------------------------------------------|---|--------------|--------------------------------------------|---------------------|-------------|------------|-------------------------------|-----|
| 2.2 Course convenor                       |   | Ass          | Assoc. prof. dr. eng. Dumitrașcu Dorin-Ion |                     |             |            |                               |     |
| 2.3 Seminar/ laboratory/ project convenor |   | Ass          | oc. prof. dr. eng. Dumit                   | trașc               | u Dorin-lon |            |                               |     |
| 2.4 Study year                            | П | 2.5 Semester | 1                                          | 2.6 Evaluation type | Ε           | 2.7 Course | Content <sup>3)</sup>         | SC  |
|                                           |   |              |                                            |                     |             | status     | Attendance type <sup>4)</sup> | CPC |

#### 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 2  | out of which: 3.2 lecture | 1  | 3.3 seminar/ laboratory/ project | 0/0/1  |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|----------------------------------|--------|
| 3.4 Total number of hours in                                                                | 28 | out of which: 3.5 lecture | 14 | 3.6 seminar/ laboratory/ project | 0/0/14 |
| the curriculum                                                                              |    |                           |    |                                  |        |
| Time allocation                                                                             |    |                           |    | hours                            |        |
| Study of textbooks, course support, bibliography and notes                                  |    |                           | 28 |                                  |        |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           | 22 |                                  |        |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           | 16 |                                  |        |
| Tutorial                                                                                    |    |                           | 4  |                                  |        |
| Examinations                                                                                |    |                           |    | 2                                |        |
| Other activities                                                                            |    |                           |    |                                  |        |

| 3.7 Total number of hours of student activity | 72  |
|-----------------------------------------------|-----|
| 3.8 Total number per semester                 | 100 |
| 3.9 Number of credits <sup>5)</sup>           | 4   |

#### 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | • |
|-------------------------|---|
| 4.2 competences-related |   |

#### 5. Conditions (if applicable)

| 5.1 for course development   | • |
|------------------------------|---|
| 5.2 for seminar/ laboratory/ | • |
| project development          |   |

#### 6. Specific competences

# **Professional competences**

- C1. Coordination of the quality management system and project management
  - L.O.3.1. The graduate can plan, coordinate and direct all production activities in order to ensure product quality; L.O.3.2. The graduate can carry out activities related to quality control by carrying out inspections and tests of

services, processes or products;

- L.O.3.3. The graduate can manage and plan various resources required for a specific project and monitor the progress recorded within the project to achieve a specific objective within a certain period of time and with a predetermined budget;
- L.O.3.4. The graduate can carry out cost and financial benefit analyses for a project over a certain period of time.
- CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering
  - L.O.1.1 The graduate can adequately use specialized information in professional communication.
  - L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.
  - L.O.1.3 The graduate has the ability to coordinate the conception, calculation and design activity of a propulsion system/mechanical system.
- CT2. Autonomy and critical thinking
  - L.O.2.1 The graduate develops his own way of solving a task, working motivatedly, with little or no supervision.
  - L.O.2.2 The graduate has autonomy in making technical decisions or those related to the management of design activities
  - L.O.2.3 The graduate has the ability to ensure the quality of a mechanical structure and product/mechanical system.
  - L.O.2.4 The graduate can develop efficient and responsible work strategies, applying the principles, norms and values of the code of professional ethics.
  - L.O.2.6 The graduate has the ability to objectively self-assess the need for lifelong learning, use information and communication in an internationally spoken language for the purpose of insertion in the labor market and continuous adaptation to its requirements.
- CT3. Preparation and presentation of reports describing the results and processes of scientific or technical research.
  - L.O.3.1 The graduate can write and present technical reports for semester practice and/or for discipline projects, going through all the necessary stages, from documentation, idea/concept, modeling/simulation to testing/validation.
  - L.O.3.2 The graduate understands and ensures compliance with the norms of ethics and academic integrity in writing reports.
  - L.O.3.3 The graduate works independently for the purpose of scientific information and to obtain the data necessary to solve the project topics; identifies his own sources of documentation.
  - L.O.3.4 The graduate has the capacity for interpersonal communication, professional counseling and assuming leadership roles in the work team.

#### 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course objective | acquiring both, the basic aspects regarding the environment of industrial and         |
|------------------------------|---------------------------------------------------------------------------------------|
|                              | research projects, as well as the theoretical and practical aspects of project        |
|                              | management, the main areas of project management.                                     |
| 7.2 Specific objectives      | • identifying and using the specific elements for the elaboration, implementation and |
|                              | monitoring of an industrial and research project;                                     |

Transversal competences

#### 8. Content

| 8.1 Course                                          | Teaching methods   | Number of hours | Remarks |
|-----------------------------------------------------|--------------------|-----------------|---------|
| 1. The project – general aspects, types of projects |                    | 2               |         |
| 2. Project development main elements                |                    | 2               |         |
| 3. Phases and processes involved in the projects    | Projector, debates | 2               |         |
| 4. Project management – general aspects             |                    | 2               |         |
| 5. The project management knowledge areas           |                    | 6               |         |

#### Bibliography

- 1. Dumitraşcu, D., Şimon, A-E., Caia, G., Merfea, B. Managementul proiectelor. Editura Universității "Transilvania", Brașov 2005.
- 2. A guide to the project management body of knowledge (PMBOK® guide). Fifth edition.
- 3. Practice standard for project estimating / Project Management Institute
- 4. Richardson, G. Project management theory and practice, second edition
- 5. Heagney, J. Fundamentals of project management, fourth edition

| 0.2 Comingy/Jahovatowy/project                    | Teaching learning motheds | Number of bours | Domarka |
|---------------------------------------------------|---------------------------|-----------------|---------|
| 8.2 Seminar/ laboratory/ project                  | Teaching-learning methods | Number of hours | Remarks |
| 1. Analysis of case studies, examples of projects |                           | 2               |         |
| 2. Methods of identification of a project.        |                           | 2               |         |
| 3. Tools and techniques to develop a project      | Drainstor debates         | 4               |         |
| 4. Implementation, monitoring and reporting a     | Projector, debates        | /1              |         |
| project                                           |                           | 4               |         |
| 5. Project evaluation                             |                           | 2               |         |

#### Bibliography

- 1. Dumitraşcu, D., Şimon, A-E., Caia, G., Merfea, B. Managementul proiectelor. Editura Universității "Transilvania", Brașov 2005.
- 2. A guide to the project management body of knowledge (PMBOK® guide). Fifth edition.
- 3. Practice standard for project estimating / Project Management Institute
- 4. Richardson, G. Project management theory and practice, second edition
- 5. Heagney, J. Fundamentals of project management, fourth edition

## 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of the discipline, the competences developed by participating in this course are in accordance with the specific requirements needed to identify, elaborate, implement and coordinate projects in the economic environment.

#### 10. Evaluation

| Activity type                                                                    | 10.1 Evaluation criteria | 10.2 Evaluation methods | 10.3 Percentage    |  |  |
|----------------------------------------------------------------------------------|--------------------------|-------------------------|--------------------|--|--|
|                                                                                  |                          |                         | of the final grade |  |  |
| 10.4 Course                                                                      | Theoretical knowledge    | - Fyram                 | CO9/               |  |  |
|                                                                                  | Practical analysis       | - Exam                  | 60%                |  |  |
| 10.5 Project                                                                     | Develop a project        | Project presentation    | 40%                |  |  |
| 10.6 Minimal performance standard                                                |                          |                         |                    |  |  |
| The marks obtained for project activities and exam should be minimum equal to 5. |                          |                         |                    |  |  |

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024

Prof. dr. ing. Ioan Călin ROȘCA,

Prof. dr. ing. Maria Luminița SCUTARU

Dean

**Head of Department** 

Conf. dr. ing. Dorin Ion DUMITRAȘCU,

Conf. dr. ing. Dorin Ion DUMITRAȘCU,

Course holder

Holder of project

#### Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: BA/MA/PhD;
- Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 30 study hours (teaching activities and individual study).

#### 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                               |
|------------------------------------|-----------------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                                          |
| 1.3 Department                     | Mechanical Engineering                                          |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                                          |
| 1.5 Study level <sup>2)</sup>      | Master                                                          |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for Propulsion Systems Engineering |

#### 2. Data about the course

| 2.1 Name of course                                            |      |              | FEN                                       | /I simulation in mechar                                  | nical ( | engineering |                               |     |
|---------------------------------------------------------------|------|--------------|-------------------------------------------|----------------------------------------------------------|---------|-------------|-------------------------------|-----|
| 2.2 Course convenor Assoc. prof. dr. ing. Marius Nicolae Baba |      |              |                                           |                                                          |         |             |                               |     |
| 2.3 Project conve                                             | enor |              | Assoc. prof. dr. ing. Marius Nicolae Baba |                                                          |         |             |                               |     |
| 2.4 Study year                                                | П    | 2.5 Semester | Ι                                         | I 2.6 Evaluation type E 2.7 Course Content <sup>3)</sup> |         |             |                               | PC  |
|                                                               |      |              |                                           |                                                          |         | status      | Attendance type <sup>4)</sup> | CPC |

#### 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 4  | out of which: 3.2 lecture | 2  | 3.3 project | 2     |
|---------------------------------------------------------------------------------------------|----|---------------------------|----|-------------|-------|
| 3.4 Total number of hours in the curriculum                                                 | 56 | out of which: 3.5 lecture | 28 | 3.6 project | 28    |
| Time allocation                                                                             |    |                           |    |             | hours |
| Study of textbooks, course support, bibliography and notes                                  |    |                           |    |             | 26    |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |                           |    | 10          |       |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |                           |    | 20          |       |
| Tutorial                                                                                    |    |                           |    |             | 12    |
| Examinations                                                                                |    |                           |    |             | 1     |
| Other activities                                                                            |    |                           |    | -           |       |

| 3.7 Total number of hours of student activity | 69  |
|-----------------------------------------------|-----|
| 3.8 Total number per semester                 | 125 |
| 3.9 Number of credits <sup>5)</sup>           | 5   |

#### 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | The course in Theory of elasticity                                        |
|-------------------------|---------------------------------------------------------------------------|
|                         | The course in Machine elements                                            |
| 4.2 competences-related | • The course in Mechanics of materials (1st year, 1st semester)           |
|                         | • The course in Computer-aided numerical control (1st year, 2nd semester) |

#### 5. Conditions (if applicable)

| 5.1 for course development   | Classroom with blackboard and video projector.                              |
|------------------------------|-----------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | Laboratory equipped with computers and dedicated software for simulation,   |
| project development          | modeling and analysis with finite elements (Simcenter 3D, Hymermesh, Abaqus |
|                              | CAE, FE-safe, Matlab).                                                      |

#### 6. Specific competences and learning outcomes

|                          | Cp2. Ability to apply simulation and testing methods for propulsion systems and use specialized programs for design (CAD/CAE): |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| :es                      | L.O.2.1. The graduate can simulate the behavior of propulsive system models based on specialized                               |
| Professional competences | software;                                                                                                                      |
| npe                      | L.O.2.4. The graduate can use computer-aided engineering software to design propulsion systems                                 |
| CO                       | (dedicated software for CAE).                                                                                                  |
| ınal                     | Cp3. Coordination of the quality management system and project management:                                                     |
| SSic                     | L.O.3.3. The graduate can manage and plan various resources necessary for a specific project and monitor                       |
| ofe                      | the progress recorded within the project to achieve a specific objective within a certain period and with a                    |
| 4                        | predetermined budget.                                                                                                          |
|                          | Ct1. Definition and/or use of concepts, theories, and scientific methods in the field of mechanical engineering:               |
|                          | L.O.1.2 The graduate can apply the theoretical and practical knowledge, methods, and terminology                               |
|                          | acquired in the field of mechanical engineering.                                                                               |
|                          | L.O.1.3 The graduate has the ability to coordinate the activity of conception, calculation, and design of a                    |
|                          | propulsion system/mechanical system.                                                                                           |
|                          | Ct2. Autonomy and critical thinking:                                                                                           |
|                          | L.O.2.1 The graduate develops his own way of solving a task, working motivatedly with little or no                             |
|                          | supervision.                                                                                                                   |
|                          | L.O.2.3 The graduate has the ability to ensure the quality of a mechanical structure and                                       |
|                          | product/mechanical system.                                                                                                     |
|                          | L.O.2.6 The graduate has the ability to objectively self-assess the need for lifelong learning, the use of                     |
| Sel                      | information and communication in an internationally spoken language for insertion in the labor market,                         |
| ence                     | and continuous adaptation to its requirements.                                                                                 |
| pet                      | Ct3. Preparing and presenting reports describing scientific or technical research results and processes:                       |
| mo:                      | L.O.3.1 The graduate can write and present technical reports for semester practice and/or discipline                           |
| salo                     | projects, going through all the necessary stages, from documentation, idea/concept, modeling/simulation,                       |
| vers                     | to testing/validation.                                                                                                         |
| Transversal competences  | L.O.3.3 The graduate works independently for the purpose of scientific information and to obtain the data                      |
| ⊨                        | necessary to solve project tasks and identify his/her own sources of documentation.                                            |

#### 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course      | Developing skills in understanding and formulating the main modern means of theoretical   |  |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| objective               | and practical approach to finite element analysis studies as essential components of the  |  |  |  |  |  |  |
|                         | design process in mechanical engineering.                                                 |  |  |  |  |  |  |
| 7.2 Specific objectives | Assimilation of specific notions for the approach to calculations of strength, stiffness, |  |  |  |  |  |  |
|                         | stability, fracture mechanics, fatigue, and heat transfer phenomena using the fin         |  |  |  |  |  |  |
|                         | element method for static or dynamic analysis studies.                                    |  |  |  |  |  |  |
|                         | Assimilation of theoretical and practical knowledge regarding the analysis of stress      |  |  |  |  |  |  |
|                         | states, strains, displacements, speeds, or accelerations commonly encountered in the      |  |  |  |  |  |  |
|                         | design of mechanical systems.                                                             |  |  |  |  |  |  |

#### 8. Content

| 8.1 Course                                                | Teaching methods        | Number of hours | Remarks |
|-----------------------------------------------------------|-------------------------|-----------------|---------|
| Fundamental concepts and principles of the finite element |                         |                 |         |
| method with applications in mechanical engineering,       | Blackboard              |                 |         |
| Advantages, disadvantages and limitations of the finite   | presentation and        | 4               | -       |
| element method, Sources of errors in finite element       | interactive discussions |                 |         |
| modeling.                                                 |                         |                 |         |

| General elements of elasticity theory.                    |                         | 3 | _ |
|-----------------------------------------------------------|-------------------------|---|---|
| Fundamental aspects of modeling and analysis of           |                         | 3 |   |
| structures with geometric and/or material nonlinearities. |                         | 5 | _ |
| Basic aspects of modeling and analysis of contact         |                         | 3 |   |
| problems.                                                 |                         | 5 | _ |
| Modeling and analysis of structures for stability under   | Blackboard              | 3 |   |
| critical and post-critical loading.                       | presentation and        | 5 | _ |
| Finite element modeling for solving fracture mechanics    | interactive discussions | 3 |   |
| problems under static loads.                              |                         | 5 | _ |
| Modeling and calculation with finite elements under       |                         | 3 |   |
| variable loads – mechanical fatigue.                      |                         | 5 | _ |
| Peculiarities of finite element analysis in the case of   |                         |   |   |
| modeling and simulation of heat propagation and           |                         | 3 | - |
| transmission phenomena.                                   |                         |   |   |
| Aspects of applying finite element analysis for modeling  |                         | 3 |   |
| and simulation of dynamic problems.                       |                         | 5 | _ |
|                                                           | •                       | • | • |

#### Bibliography

- 1. Baba, M,N. O analiză de ansamblu a metodelor actuale de proiectare pe baza duratei de viață la solicitări variabile, Editura Agir, 2021 http://www.agir.ro/buletine/3202.pdf
- 2. Radeș, M. Analiza cu elemente finite. București, Universitatea Politehnica din București, 2019.
- 3. Pascu, A., Oleksik, V. Calculul structurilor utilizând metoda elementului finit, Editura Universității "Lucian Blaga" din Sibiu, Sibiu, 2014.
- 4. Popa A.C.V., Cerbu C. Introducere în Metoda Elementelor Finite, Editura Universității Transilvania din Brașov, 2013.
- 5. Mănescu, T.Şt., Nedelcu, D. Analiza structurală prin metoda elementului finit, Editura Orizonturi Universitare, Timișoara, 2005.
- 6. Sorohan, Şt., Constantinescu, I.N. Practica modelării și analizei cu elemente finite, Editura Politehnica Press, București, 2003.
- 7. Faur, N. Elemente finite. Editura Politehnica, Timişoara, 2002.
- 8. Blumenfeld, M. Introducere în metoda elementelor finite, Editura Tehnică, București, 1995.
- 9. Pascariu, I. Elemente finite Concepte-Aplicații, Editura Militară, București, 1985.
- 10. Cook, R,D., et al. Concepts and applications of finite element analysis. John Wiley & sons, 2007.

| 8.2 Project                                                       | Teaching-learning                          | Number of hours | Remarks |
|-------------------------------------------------------------------|--------------------------------------------|-----------------|---------|
|                                                                   | methods                                    |                 |         |
| Simulation of the structural behavior of a 3D frame: static       |                                            |                 | -       |
| analysis with large specific displacements and strains            |                                            | 2               |         |
| (geometric nonlinearity): Abaqus CAE software.                    |                                            |                 |         |
| Modeling the structural behavior of a 3D support-bracket          |                                            |                 | -       |
| part: static analysis with physical (material) nonlinearity:      | Calving practical                          | 3               |         |
| Abaqus CAE software.                                              | Solving practical applications, processing |                 |         |
| Structural simulation of a 3D pump assembly: static               | data, preparing reports                    |                 | -       |
| analysis with general nonlinearity. (which cumulates the          | of results, and critically                 | 3               |         |
| conditions of material nonlinearity and geometric                 | analysis of results                        | 5               |         |
| nonlinearity): Abaqus CAE software. CAE.                          | analysis of results                        |                 |         |
| Nonlinear static analysis of stability (buckling) in the critical |                                            |                 | -       |
| and post-critical regime of cylindrical shells subjected to       |                                            | 3               |         |
| torsion, using the arc-length algorithm: Abaqus CAE               |                                            | 3               |         |
| software.                                                         |                                            |                 |         |

| Simulation of crack propagation under static loading of a    |                            |   | - |
|--------------------------------------------------------------|----------------------------|---|---|
| CT-type specimen made of steel, with a pre-existing crack    |                            | 3 |   |
| using the XFEM methodology: Abaqus CAE software.             |                            |   |   |
| Simulation of variable loading (uniaxial fatigue) of a shock |                            |   | - |
| absorber type part within the low durability range (LCF)     |                            | 2 |   |
| using the direct-cycle method: Abaqus CAE software.          |                            |   |   |
| Modeling the response to variable loads (multiaxial fatigue) |                            |   | - |
| of a shaft-type part loaded in the high durability range     | Solving practical          | 3 |   |
| (HCF): Abaqus CAE and FE-safe software.                      | applications, processing   |   |   |
| Introduction to multidisciplinary finite element modeling.   | data, preparing reports    |   | - |
| Coupling of analyses (thermal and mechanical effects) for    | of results, and critically | 3 |   |
| the case of a pressure vessel: Abaqus CAE software.          | analysis of results        |   |   |
| Harmonic analysis (frequency response) for an anchor part:   |                            | 2 | - |
| Abaqus CAE software.                                         |                            | 3 |   |
| Explicit dynamic analysis of a rectangular metal plate       |                            |   | - |
| subjected to transverse ballistic impact with a spherical    |                            | 3 |   |
| projectile: Abaqus CAE software.                             |                            |   |   |
| I                                                            |                            |   |   |

#### Bibliography

- 1. Baba, M, N., Grovu, M., Păuna, C., Runcianu, C. Proiectarea pe baza duratei de viață Îndrumar de laborator, Reprografia Universității Transilvania din Brașov, 2020.
- 2. Khennane, A. Introduction to finite element analysis using MATLAB® and Abaqus. CRC Press, 2013.
- 3. Cerbu, C, and Popa, A.C.V. Modelarea structurilor mecanice: aplicații în Abaqus. Editura Universității Transilvania, 2013.
- 4. Giner, E., Sukumar, N., Tarancón, J. E., & Fuenmayor, F. J. An Abaqus implementation of the extended finite element method. Engineering fracture mechanics, 2009.
- 5. Shigley, J. E., Mischke, C. R., and Budynas, R,G. Mechanical Engineering Design, 2004, Seventh Edition, McGraw Hill, New York, NY.
- 6. Roşca, I.C. Vibrații mecanice. Infomarket, 2002.
- 7. Pană, T., Pastramă, St.D. Integritatea structurilor metalice, Editura Fair Partners, Bucuresti, 2000.

## 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The skills acquired will be necessary for design engineers in mechanical engineering, industrial engineering, and automotive engineering who work in design companies, as well as for technological engineers.

#### 10. Evaluation

| Activity type             | 10.1 Evaluation criteria           | 10.2 Evaluation methods        | 10.3 Percentage    |
|---------------------------|------------------------------------|--------------------------------|--------------------|
|                           |                                    |                                | of the final grade |
| 10.4 Course               | Six short-answer questions to test |                                |                    |
|                           | the knowledge of fundamental       | Written exam (1 hour)          | 50%                |
|                           | terms and concepts                 |                                |                    |
| 10.5 Seminar/ laboratory/ | Submitting results reports for     | Project milestones, deadlines, |                    |
| project                   | projects developed during the      | and achievement of objectives  | 50%                |
|                           | semester on time                   | set within the project themes. |                    |

#### 10.6 Minimal performance standard

• For the written theory exam, the minimum passing grade is 5 (five): The student must demonstrate the ability to exemplify and justify the answers to the theoretical questions graphically.

- The minimum passing grade for the project is 5 (five): The condition for passing is that each project topic must be scored with a minimum of 5 (five). The student must demonstrate the ability to solve each project topic based on the basic theoretical principles presented in the course and discussed when granting visas.
- The final grade consists of 0.5 (Written theory exam) + 0.5 (Project).

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

**Head of Department** 

Assoc. prof. dr. eng. Marius N. Baba,

Assoc. prof. dr. eng. Marius N. Baba

Course holder

Holder of project

#### Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

#### 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | MASTER                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

#### 2. Data about the course

| 2.1 Name of course                                       |   | Prof         | essional internship |                     |   |            |                               |     |
|----------------------------------------------------------|---|--------------|---------------------|---------------------|---|------------|-------------------------------|-----|
| 2.2 Course convenor                                      |   |              |                     |                     |   |            |                               |     |
| 2.3 <del>Seminar</del> / <del>laboratory</del> / project |   |              |                     |                     |   |            |                               |     |
| convenor                                                 |   |              |                     |                     |   |            |                               |     |
| 2.4 Study year                                           | П | 2.5 Semester | I                   | 2.6 Evaluation type | С | 2.7 Course | Content <sup>3)</sup>         | PC  |
|                                                          |   |              |                     |                     |   | status     | Attendance type <sup>4)</sup> | CPC |

#### 3. Total estimated time (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 12  | out of which: | 3.3 Project  | 12  |
|---------------------------------------------------------------------------------------------|-----|---------------|--------------|-----|
|                                                                                             |     | 3.2 lecture   |              |     |
| 3.4 Total number of hours in                                                                | 168 | out of which: | 3.6. Project | 168 |
| the curriculum                                                                              |     | 3.5 lecture   |              |     |
| Time allocation                                                                             |     |               | hours        |     |
| Study of textbooks, course support, bibliography and notes                                  |     |               | 20           |     |
| Additional documentation in libraries, specialized electronic platforms, and field research |     |               | 40           |     |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |     |               | 60           |     |
| Tutorial                                                                                    |     |               | 28           |     |
| Examinations                                                                                |     |               | 2            |     |
| Other activities                                                                            |     |               | 20           |     |
|                                                                                             |     |               |              |     |

| 3.7 Total number of individual learning hours |   |
|-----------------------------------------------|---|
| 3.8 Total number per semester                 | - |
| 3.9 Number of credits <sup>4)</sup>           | 6 |

#### 4. Prerequisites (if applicable)

| 4.1 curriculum-related  |                           |
|-------------------------|---------------------------|
| 4.2 competences-related | To be able to do projects |

#### **5. Conditions** (if applicable)

| 5.1 for course development   |                                                                                |
|------------------------------|--------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | In the University laboratories and in the frame of Schaeffler Romania Company. |
| project development          |                                                                                |

#### 6. Specific competences

|              |             | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems                                                                                                                                                    |  |  |
|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| la l         | Ses         | L.O.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate                                                                                                                                                         |  |  |
| Sion         | ten         | design concepts;                                                                                                                                                                                                                                             |  |  |
| Professional | competences | L.O.1.2. The graduate can analyze the principles that must be used in the development of technical projects                                                                                                                                                  |  |  |
| P            | CO          | L.O.1.3. The graduate can use the technical documentation in the technical process, in general and, in                                                                                                                                                       |  |  |
|              |             | particular, for the realization of propulsion systems;                                                                                                                                                                                                       |  |  |
|              |             | CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering                                                                                                                                               |  |  |
|              |             | L.O.1.1 The graduate can adequately use specialized information in professional communication.                                                                                                                                                               |  |  |
|              | 21          |                                                                                                                                                                                                                                                              |  |  |
| <u>ga</u>    | ۳           | L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology                                                                                                                                                     |  |  |
| versal       | etence      | L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.                                                                                                             |  |  |
| Transversal  | competences | L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.  L.O.1.3 The graduate has the ability to coordinate the activity of conception, calculation and design of a |  |  |

#### 7. Course objectives (resulting from the specific competences to be acquired)

| 7.1 General course      | To do a project / semester that demonstrate engineering skills acquired during the |  |
|-------------------------|------------------------------------------------------------------------------------|--|
| objective               | second year semesters                                                              |  |
| 7.2 Specific objectives | Improving knowledge acquired in the two semesters of the second year of study      |  |
|                         | Defining a theme to be continued at master's thesis                                |  |

#### 8. Content

| 8.1 Project                                           | Teaching methods        | Remarks |
|-------------------------------------------------------|-------------------------|---------|
| Identify issues for project practice                  |                         |         |
| Establishing project design practice                  |                         |         |
| Identification of development directions of the theme | Individual or team work |         |
| Analysis of the actual situation                      |                         |         |
| Determination of the solutions encountered problems   |                         |         |
| Presentation of projects                              |                         |         |

## 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The topic is made with the company Schaeffler Romania is centered on a theme of its own

#### 10. Evaluation

| Activity type                                                                        | 10.1 Evaluation criteria        | 10.2 Evaluation methods | 10.3 Percentage of the final grade |  |  |
|--------------------------------------------------------------------------------------|---------------------------------|-------------------------|------------------------------------|--|--|
| 10.4 Course                                                                          |                                 |                         |                                    |  |  |
| 10.5 Project                                                                         | Scientific level of the project | Oral presentation       | 100%                               |  |  |
| 10.6 Minimal performance standard                                                    |                                 |                         |                                    |  |  |
| • Students must prove, by design, the properties of terms and technical foundations. |                                 |                         |                                    |  |  |

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

**Head of Department** 

Course holder Holder of project

Not the case Individual holder

#### Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

#### 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | MASTER                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

#### 2. Data about the course

| 2.1 Name of course               |   |          |   | essional Intership  |   |            |                               |     |
|----------------------------------|---|----------|---|---------------------|---|------------|-------------------------------|-----|
| 2.2 Course convenor              |   |          |   |                     |   |            |                               |     |
| 2.3 Seminar/ laboratory/ project |   |          |   |                     |   |            |                               |     |
| convenor                         |   |          |   |                     |   |            |                               |     |
| 2.4 Study year                   | П | 2.5      | 2 | 2.6 Evaluation type | С | 2.7 Course | Content <sup>3)</sup>         | PC  |
|                                  |   | Semester |   |                     |   | status     | Attendance type <sup>4)</sup> | CPC |

#### 3. Total estimated time (hours of teaching activities per semester)

| 22                                                                                          | out of which:                                   |                                                                                                                                       | 1 3 3 D!                                                                                                                                            |                                                                                                                                                                                   |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                             | out or writeri.                                 | 0                                                                                                                                     | 3.3 Project                                                                                                                                         | 22                                                                                                                                                                                |  |
|                                                                                             | 3.2 lecture                                     |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
| 308                                                                                         | out of which:                                   | 0                                                                                                                                     | 3.6. Project                                                                                                                                        | 308                                                                                                                                                                               |  |
|                                                                                             | 3.5 lecture                                     |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
| Time allocation                                                                             |                                                 |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
| Study of textbooks, course support, bibliography and notes                                  |                                                 |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
| Additional documentation in libraries, specialized electronic platforms, and field research |                                                 |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |                                                 |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
| Tutorial                                                                                    |                                                 |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
| Examinations                                                                                |                                                 |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
| Other activities                                                                            |                                                 |                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |  |
|                                                                                             | ort, bibliogra<br>aries, specia<br>ories/ proje | 308 out of which: 3.5 lecture  ort, bibliography and notes aries, specialized electronic platform cories/ projects, homework, papers, | 308 out of which: 3.5 lecture  ort, bibliography and notes aries, specialized electronic platforms, and cories/ projects, homework, papers, portfol | 308 out of which: 3.5 lecture  ort, bibliography and notes aries, specialized electronic platforms, and field research cories/ projects, homework, papers, portfolios, and essays |  |

| 3.7 Total number of individual learning hours |    |
|-----------------------------------------------|----|
| 3.8 Total number per semester                 |    |
| 3.9 Number of credits <sup>4)</sup>           | 20 |

#### 4. Prerequisites (if applicable)

| 4.1 curriculum-related  |                           |
|-------------------------|---------------------------|
| 4.2 competences-related | To be able to do projects |

#### **5. Conditions** (if applicable)

| 5.1 for course development   |                                                                                |
|------------------------------|--------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | In the University laboratories and in the frame of Schaeffler Romania Company. |
| project development          |                                                                                |

#### 6. Specific competences

|              | C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems      |
|--------------|----------------------------------------------------------------------------------------------------------------|
| _ s:         | L.O.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate           |
| Professional |                                                                                                                |
| ssi          | design concepts;                                                                                               |
| ofe:         | L.O.1.2. The graduate can analyze the principles that must be used in the development of technical projects    |
| P. O         | L.O.1.3. The graduate can use the technical documentation in the technical process, in general and, in         |
|              | particular, for the realization of propulsion systems;                                                         |
|              | CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering |
|              | L.O.1.1 The graduate can adequately use specialized information in professional communication.                 |
| ial          | L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology       |
| vers         | in the field of mechanical engineering.                                                                        |
| Transversal  | L.O.1.3 The graduate has the ability to coordinate the activity of conception, calculation and design of a     |
| 1 0 C        | propulsion system/mechanical system.                                                                           |

#### 7. Course objectives (resulting from the specific competences to be acquired)

| ,                            |   | 1 '                                                                     |
|------------------------------|---|-------------------------------------------------------------------------|
| 7.1 General course objective |   | To do a project / semester that demonstrate engineering skills acquired |
|                              |   | during the second year semesters                                        |
| 7.2 Specific objectives      | • | Improving knowledge acquired in the two semesters of the second year of |
|                              |   | study                                                                   |
|                              | • | Defining a theme to be continued at master's thesis                     |

#### 8. Content

| or content                                            |                         |         |
|-------------------------------------------------------|-------------------------|---------|
| 8.1 Project                                           | Teaching methods        | Remarks |
| Identify issues for project practice                  |                         |         |
| Establishing project design practice                  |                         |         |
| Identification of development directions of the theme | Individual or team work |         |
| Analysis of the actual situation                      |                         |         |
| Determination of the solutions encountered problems   |                         |         |
| Presentation of projects                              |                         |         |

## 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The topic is made with the company Schaeffler Romania is centered on a theme of its own

#### 10. Evaluation

| Activity type                                                                      | 10.1 Evaluation criteria        | 10.2 Evaluation methods | 10.3 Percentage    |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------|-------------------------|--------------------|--|--|--|--|
|                                                                                    |                                 |                         | of the final grade |  |  |  |  |
| 10.4 Course                                                                        |                                 |                         |                    |  |  |  |  |
| 10.5 Project                                                                       | Scientific level of the project | Oral presentation       | 100%               |  |  |  |  |
| 10.6 Minimal performance standard                                                  |                                 |                         |                    |  |  |  |  |
| Students must prove, by design, the properties of terms and technical foundations. |                                 |                         |                    |  |  |  |  |

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

**Head of Department** 

Not the case Individual holder

Course holder Project holder

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- <sup>2)</sup> Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).

#### 1. Data about the study programme

| 1.1 Higher education institution   | Transilvania University of Brașov                    |
|------------------------------------|------------------------------------------------------|
| 1.2 Faculty                        | Mechanical Engineering                               |
| 1.3 Department                     | Mechanical Engineering                               |
| 1.4 Field of study <sup>1)</sup>   | Mechanical Engineering                               |
| 1.5 Study level <sup>2)</sup>      | MASTER                                               |
| 1.6 Study programme/ Qualification | Practical Integrated Methods for engines engineering |

#### 2. Data about the course

| 2.1 Name of course               |   |          |   | tation project activity |   |            |                               |     |
|----------------------------------|---|----------|---|-------------------------|---|------------|-------------------------------|-----|
| 2.2 Course convenor              |   |          |   |                         |   |            |                               |     |
| 2.3 Seminar/ laboratory/ project |   |          |   |                         |   |            |                               |     |
| convenor                         |   |          |   |                         |   |            |                               |     |
| 2.4 Study year                   | Ш | 2.5      | 2 | 2.6 Evaluation type     | С | 2.7 Course | Content <sup>3)</sup>         | PC  |
|                                  |   | Semester |   |                         |   | status     | Attendance type <sup>4)</sup> | CPC |

#### **3. Total estimated time** (hours of teaching activities per semester)

| 3.1 Number of hours per week                                                                | 6  | out of which: | 0 | 3.3 Project  | 6   |
|---------------------------------------------------------------------------------------------|----|---------------|---|--------------|-----|
|                                                                                             |    | 3.2 lecture   |   |              |     |
| 3.4 Total number of hours in                                                                | 84 | out of which: | 0 | 3.6. Project | 84  |
| the curriculum                                                                              |    | 3.5 lecture   |   |              |     |
| Time allocation                                                                             |    |               |   |              |     |
| Study of textbooks, course support, bibliography and notes                                  |    |               |   |              |     |
| Additional documentation in libraries, specialized electronic platforms, and field research |    |               |   |              |     |
| Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays   |    |               |   |              |     |
| Tutorial                                                                                    |    |               |   |              |     |
| Examinations                                                                                |    |               |   |              |     |
| Other activities                                                                            |    |               |   |              |     |
|                                                                                             |    |               |   |              | l . |

| 3.7 Total number of individual learning hours |    |
|-----------------------------------------------|----|
| 3.8 Total number per semester                 |    |
| 3.9 Number of credits <sup>4)</sup>           | 10 |

#### 4. Prerequisites (if applicable)

| 4.1 curriculum-related  | Complete all disciplines along the four years of southern |
|-------------------------|-----------------------------------------------------------|
| 4.2 competences-related | To be able to do projects                                 |

#### **5. Conditions** (if applicable)

| 5.1 for course development   |                                                                                |
|------------------------------|--------------------------------------------------------------------------------|
| 5.2 for seminar/ laboratory/ | In the University laboratories and in the frame of Schaeffler Romania Company. |
| project development          |                                                                                |

#### 6. Specific competences

#### C1. Ability to develop products and define criteria for selecting design solutions for propulsion systems

- L.O.1.1. The graduate can conceive sketches and design elements necessary to develop and communicate design concepts;
- L.O.1.2. The graduate can analyze the principles that must be used in the development of technical projects;
- L.O.1.3. The graduate can use the technical documentation in the technical process, in general and, in particular, for the realization of propulsion systems;
- C2. The ability to apply simulation and testing methods for propulsion systems and to use specialized programs for design (CAD/CAE)
  - L.O.2.1. The graduate can perform the simulation of the behavior of the models of propulsion systems based on specialized software;
  - L.O.2.2. The graduate can develop test protocols and interpret and analyze data collected during testing to formulate conclusions and solutions;
  - L.O.2.3. The graduate can develop, design and make prototypes for the evaluation of propulsion equipment tests:
  - L.O.2.4. The graduate can use assisted engineering software specific to the design of propulsion systems (dedicated software for CAE).
  - L.O.2.5. The graduate can use computer-aided design systems (dedicated CAD software);
- C3. Coordination of the quality management system and project management
  - L.O.3.1. The graduate can plan, coordinate and direct all production activities in order to ensure the quality of the products;
  - L.O.3.2. The graduate can carry out activities related to quality control by performing inspections and tests of services, processes or products;
  - L.O.3.3. The graduate can manage and plan various resources required for a specific project and monitor the progress of the project to achieve a specific objective within a specific period of time and with a predetermined budget;
  - L.O.3.4. The graduate can perform cost and financial benefit analysis for a project over a period of time.

### CT1. Definition and/or use of concepts, theories and scientific methods in the field of mechanical engineering L.O.1.1 The graduate can adequately use specialized information in professional communication.

- L.O.1.2 The graduate can apply the acquired theoretical and practical knowledge, methods and terminology in the field of mechanical engineering.
- L.O.1.3 The graduate has the ability to coordinate the activity of conception, calculation and design of a propulsion system/mechanical system.
- CT3. Preparing and presenting reports describing the results and processes of scientific or technical research.
- L.O.3.1 The graduate can write and present technical reports for the semester practice and/or for the discipline projects, going through all the necessary stages, from documentation, idea/concept, modeling/simulation to testing/validation.
- L.O.3.3 The graduate works independently for the purpose of scientific information and to obtain the data necessary to solve the project topics; identify own sources of documentation.

#### **7. Course objectives** (resulting from the specific competences to be acquired)

| 7.1 General course objective | a project demonstrating the engineering capacities acquired during the two |  |
|------------------------------|----------------------------------------------------------------------------|--|
|                              | years of study                                                             |  |
| 7.2 Specific objectives      | Establishment of the project structure                                     |  |
|                              | 1. Table of Contents                                                       |  |
|                              | 2. Introduction (Scientific importance, applicability, realization)        |  |
|                              | 3. Current status and trends in the field of proposed theme                |  |
|                              | 4. Modeling and simulation of the proposed solution                        |  |
|                              | 5. Testing the Model                                                       |  |

F03.2-PS7.2-01/ed.3, rev.6

## Professional competences

# ompetences

# Transversal competences

| 6. Design of component parts                                                 |
|------------------------------------------------------------------------------|
| 7. Economic Analysis                                                         |
| 8. Conclusions                                                               |
| 9. Bibliography                                                              |
| It is recommended to:                                                        |
| Achievement of the draft Diploma in partnership with Schaeffler Romania      |
| Company;                                                                     |
| • Lucrarea, redactată pe hârtie A4, va cuprinde minimum 75 de pagini și      |
| maxim 90 pagini;                                                             |
| • The support will be made with video support (projector) being developed in |
| Power Point and on drawings with technical drawing of execution;             |
| • The work will be done before a Commission with the consent of the          |
| scientific coordinator.                                                      |

#### 8. Content

| 8.1 Project                                                                      | Teaching methods   | Remarks  |
|----------------------------------------------------------------------------------|--------------------|----------|
| Identify issues for project practice                                             |                    | 2 hours  |
| Reviewing the theoretical foundations required for the project theme             |                    | 1 hour   |
| Establishing the table of contents and bibliography                              | Individual or team | 1 hour   |
| Analysis of the current stage and trends in the field of the Diploma project     | work               | 20 hours |
| (scientific importance, applicability, realization)                              |                    |          |
| Identification of the theme development directorates in the dissertation project |                    | 4 hours  |
| Theoretical substantiation of the basis of diploma                               |                    | 28 hours |
| Experimental substantiation of the basis of diploma                              |                    | 28 hours |

## 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

• Students must acquire the basics of the technique

#### 10. Evaluation

| Activity type                                                                      | 10.1 Evaluation criteria        | 10.2 Evaluation methods | 10.3 Percentage    |
|------------------------------------------------------------------------------------|---------------------------------|-------------------------|--------------------|
|                                                                                    |                                 |                         | of the final grade |
| 10.4 Course                                                                        |                                 |                         |                    |
| 10.5 Project                                                                       | Scientific level of the project | Oral presentation       | 100%               |
| 10.6 Minimal performance standard                                                  |                                 |                         |                    |
| Students must prove, by design, the properties of terms and technical foundations. |                                 |                         |                    |

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.ing. Ioan Călin, ROȘCA

Prof.dr.ing. Maria Luminița, SCUTARU

Dean

**Head of Department** 

Not the case Individual holder

Course holder Project holder

#### Note:

1) Field of study – select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);

- <sup>2)</sup> Study level choose from among: BA/MA/PhD;
- Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- <sup>4)</sup> Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- <sup>5)</sup> One credit is the equivalent of 25 study hours (teaching activities and individual study).