1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course Multiphysics Simulations								
2.2 Course convenor			Ass	Assoc. Prof. Ph. D. Olivia Florea				
			Pro	Prof. Ph. D. eng. Horia ABĂITANCEI				
2.3 Seminar/ laboratory/ project		Ass	Assoc. Prof. Ph. D. Olivia Florea					
convenor		Pro	Prof. Ph. D. eng. Horia ABĂITANCEI					
2.4 Study year	1	2.5 Semester	1	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	CPC
				status	Attendance type ⁴⁾	AC		

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which	: 3.2 lecture	2	3.3 seminar/ laboratory/	0/1/1
					project	
3.4 Total number of hours in	56	out of which	: 3.5 lecture	28	3.6 seminar/ laboratory/	0/14/14
the curriculum					project	
Time allocation						hours
Study of textbooks, course support, bibliography and notes						60
Additional documentation in libraries, specialized electronic platforms, and field research						50
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays						2
Tutorial						2
Examinations						3
Other activities						2
3.7 Total number of bours of student activity 119						

3.7 Total number of nours of student activity	119
3.8 Total number per semester	175
3.9 Number of credits ⁵⁾	7

4. Prerequisites (if applicable)

4.1 curriculum-related	Knowledge of Mathematical Analysis, Algad, Special Mathematics, Vehicle
	Dynamics, Fluid Mechanics, Hydraulics
4.2 competences-related	Operating with fundamental concepts of engineering sciences

5. Conditions (if applicable)

5.1 for course development	Computer room with MATLAB and video projector
5.2 for seminar/ laboratory/	Computer room with MATLAB and video projector
project development	

S	C.3 Competencies for carrying out tests and practical determinations
enci	L.O.3.1 To perform experimental, environmental and operational tests on models, prototypes or on systems
pet(and equipment to test their resistance and capabilities in normal and extreme conditions;
ШO	L.O.3.2 To interpret and analyze data collected during testing, to formulate conclusions, new perspectives or
alc	solutions.
sior	L.O.3.3 To record the data that was specifically identified during the previous tests, to check if the results of
ofes	the test produce specific results;
Pro	CP.4 Competences to carry out scientific research.
	L.O.4.5 To carry out research on the present and future developments and currents in design, as well as on the
	related target characteristics of the market;
	L.O.4.6 To anticipate changes in automotive technology, to supervise and investigate recent technological
	trends and developments;
	L.O.4.7 To manage research data;
	L.O.4.8 To operate scientific research and laboratory equipment;
	L.O.4.9 To synthesize information, critically interpret and summarize new and complex information from
	various sources; CP.5 Software design and development capacity
	L.O.5.1 to develop software for motor vehicles and related systems;
	L.O.5.2 understand and apply the principles of programming and software development technologies in the
	automotive industry;
	L.O.5.3 to evaluate and choose suitable platforms, programming languages and software technologies for
	projects in the automotive industry;
	L.O.5.4 to develop software applications to improve the functionality, performance and safety of motor
	vehicles;
	L.O.5.5 to test and debug software to ensure the proper and safe operation of vehicle systems;
	L.O.5.6 to integrate software systems in the global architecture of motor vehicles, taking into account security
	and compatibility aspects;
	L.O.5.7 manage automotive software development projects, including planning, budgeting and monitoring
	progress.
	CP.5 Software design and development capacity Learning outcomes.
	L.O.5.1 develop software for automotive vehicles and related systems;
	L.O.5.2 understand and apply the principles of programming and software development technologies in the
	automotive industry;
	L.O.5.3 evaluate and choose platforms, programming languages and software technologies suitable for
	automotive industry projects;
	L.O.5.4 develop software applications to improve the functionalities, performance and safety of automotive
	vehicles;
	L.O.5.5 test and debug software to ensure the correct and safe operation of automotive systems;
	L.0.5.6 integrate software systems into the overall automotive architecture, taking into account security and
	compatibility aspects;
	L.U.5.7 manage automotive software development projects, including planning, budgeting and monitoring
	progress.

	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
	L.O.1.3 to show initiative, to be proactive,
	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
	operating technological installations, tools or digital equipment;
	L.O.1.5 identify problems and make decisions to solve them;
	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
	them in his day-to-day activity;
	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
	Ct2. Communication and teamwork skills
	L.O.2.1 to carry out their work in a team;
	L.O. 2.2 to address an audience, give a speech, make a presentation;
	L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
	conferences or online events;
S	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
ence	L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
pet(compromise solutions, resolving conflicts;
ШO	L.O.2.6 to be able to lead others, coordinate a team;
sal c	L.O.2.7 be able to train other team members and organize information, objects and resources;
verg	L.O.2.8 to motivate others, stimulating action;
ans	L.O.2.9 to develop teams, managing time and delegating responsibilities;
μ	L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• Modeling and simulation play a crucial role in the engineering design process.				
	Modern simulation tools allow the creation of complete system models that				
	take into account all interactions, thus creating multi-physics models. These				
	models accelerate the design and testing process, thus saving human and				
	material resources.				
7.2 Specific objectives	Understanding the principles and potential for automated design using				
	advanced integrated development environments Matlab				
	• Understanding and acquiring the advanced knowledge necessary to develop				
	applications for dynamic simulation of dynamic systems based on Matlab				

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Dynamical systems in Matlab	Interactive course	2	
2. Programming in Matlab	Interactive course	2	
3. Kinematics problems solved in Matlab	Interactive course	2	
4. Dynamics problems solved in Matlab	Interactive course	2	
5. Graphical representations in Matlab	Interactive course	2	
6. Animations in Matlab	Interactive course	2	
7. Fractals in Matlab	Interactive course	2	

Bibliography

- 1. Stormy Attaway, Matlab: A Practical Introduction to Programming and problem Solving, Elsevier, 2009
- 2. Nicoleta Breaz, Marian Crăciun, Păstorel Gașpar, Maria Miroiu, Iuliana Paraschiv-Munteanu, MODELAREA MATEMATICĂ PRIN MATLAB, 2011
- 3. B. Rofffel and B. Betlem, Process Dynamics and Control, Modeling for Control and Prediction, John Wiley & Sons, Ltd 2006
- 4. Luyben, W.L., Process Modeling Simulation, and Control for chemical engineers, McGraw-Hill, 1973.
- 5. Imre-Lucaci Arpad, Ana-Maria Cormoș, MATLAB, exemple și aplica ii în ingineria chimică, Ed. Presa Universitară Clujeană, Cluj-Napoca, 2008.
- 6. Brian D. Hahn and Daniel T. Valentine Essential MATLAB for Engineers and Scientists, Third Edition, Elsevier, 2006.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
1. Dynamical systems in Matlab	Individual work	2	
2. Programming in Matlab	Individual work	2	
3. Kinematics problems solved in Matlab	Individual work	2	
4. Dynamics problems solved in Matlab	Individual work	2	
5. Graphical representations in Matlab	Individual work	2	
6. Animations in Matlab	Individual work	2	
7. Fractals in Matlab	Individual work	2	

Bibliography

- 7. Stormy Attaway, Matlab: A Practical Introduction to Programming and problem Solving, Elsevier, 2009
- 8. Nicoleta Breaz, Marian Crăciun, Păstorel Gașpar, Maria Miroiu, Iuliana Paraschiv-Munteanu, MODELAREA MATEMATICĂ PRIN MATLAB, 2011
- 9. B. Rofffel and B. Betlem, Process Dynamics and Control, Modeling for Control and Prediction, John Wiley & Sons, Ltd 2006
- 10. Luyben, W.L., Process Modeling Simulation, and Control for chemical engineers, McGraw-Hill, 1973.
- 11. Imre-Lucaci Arpad, Ana-Maria Cormoș, MATLAB, exemple și aplica ii în ingineria chimică, Ed. Presa Universitară Clujeană, Cluj-Napoca, 2008.
- 12. Brian D. Hahn and Daniel T. Valentine Essential MATLAB for Engineers and Scientists, Third Edition, Elsevier, 2006.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical and practical approaches demonstrate the latest programming ideas for automotive design. The curriculum is consistent with similar fields addressed to universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage					
			of the final grade					
10.4 Course	The ability to operate with	Written exam	50%					
	the acquired knowledge;							
10.5 Seminar/ laboratory/	Ability to apply in practice;	Written exam	50%					
project								
10.6 Minimal performance standard								
Dynamic simulation of a mechanical system in Matlab								

This course outline was certified in the Department Board meeting on 20/092024. and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
J. Roscan Dean	AD.
	Head of Department
Prof. Ph. D. Olivia Florea,	Prof. Ph. D. Olivia Florea,
-	Æ
Prof. Ph. D. eng. Horia ABĂITANCEI,	Prof. Ph. D. eng. Horia ABĂITANCEI,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course CAD and Graphics programming								
2.2 Course convenor Prof. Ph. D. eng. Florin GÎF			RBAC	А				
2.3 Seminar/ laboratory/ project		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
convenor								
2.4 Study year	1	2.5 Semester	1	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 l	ecture	2	3.3 seminar/ laboratory/ project	0/1/1
3.4 Total number of hours in	56	out of which: 3.5 l	ecture	28	3.6 seminar/ laboratory/ project	0/14/1
the curriculum						4
Time allocation						
Study of textbooks, course support, bibliography and notes						15
Additional documentation in libraries, specialized electronic platforms, and field research						25
Preparation of seminars/ laborat	tories/	projects, homewor	k, papers,	portfol	lios, and essays	45
Tutorial						4
Examinations						2
Other activities					3	
3.7 Total number of hours of student activity 94						
3.8 Total number per semester 150						

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	Knowledge of Mathematical Algebra, Elementary CAD notions Cunoașterea
	algebricii matematice, noțiuni elementare CAD
4.2 competences-related	Operating with fundamental concepts of engineering sciences.

6

5. Conditions (if applicable)

5.1 for course development	projector
	lecture notes
	recommended bibliography
5.2 for seminar/ laboratory/	projector
project development	laboratory equipped with computers
	virtual and augmented reality equipments
	lecture notes

		recommended bibliography
--	--	--------------------------

	Cp1. Competences in the design of systems, equipment and vehicle components
	L.O.1.1 the ability to study, interpret and capitalize on technical resources specific to the motor vehicle
	manufacturing industry;
	L.O.1.2 the use of advanced concepts, techniques and principles regarding the design of modern systems
	and equipment intended for motor vehicles;
	L.O.1.3 applying mathematical methods and using calculation and simulation programs to perform
	technical analyzes and design solutions for specific problems;
	L.O.1.4 designing prototypes of vehicle components and systems by applying advanced engineering
	principles;
	Cp2. Software design and development capability
	L.O.2.1 to develop software for motor vehicles and related systems;
	L.O.2.2 understand and apply the principles of programming and software development technologies in the
	automotive industry;
	L.O.2.3 to evaluate and choose suitable platforms, programming languages and software technologies for
es	projects in the automotive industry;
enc	L.O.2.4 to develop software applications to improve the functionality, performance and safety of motor
Ipet	vehicles;
соц	L.O.2.5 to test and debug software to ensure the proper and safe operation of vehicle systems;
nal	Cp3. Skills in using CAD-CAM-CAE systems
ssio	L.O.3.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
ofe	analysis and optimization of an industrial drawing or model;
д	

	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
	L.O.1.3 to show initiative, to be proactive,
	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
	operating technological installations, tools or digital equipment;
	L.O.1.5 identify problems and make decisions to solve them;
	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
	them in his day-to-day activity;
	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
	Ct2. Communication and teamwork skills
	L.O.2.1 to carry out their work in a team;
	L.O. 2.2 to address an audience, give a speech, make a presentation;
	L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
	conferences or online events;
ស្ល	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
ence	L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
pete	compromise solutions, resolving conflicts;
mo	L.O.2.6 to be able to lead others, coordinate a team;
sal c	L.O.2.7 be able to train other team members and organize information, objects and resources;
vers	L.O.2.8 to motivate others, stimulating action;
ans	L.O.2.9 to develop teams, managing time and delegating responsibilities;
μ	L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Enhance the theoretical knowledge of CAD modeling and identifying their
	specific solutions for automotive design;
	 Training and skills development of advanced 3D graphics programming;
	 Develop specific programming skills in CAD / CAE languages ;
	• Enhance the techniques of computer aided design of parts / assemblies on
	which the virtual prototype of the product is achieved throughout the life
	cycle;
	 Training and skills development of students on the use of specialized
	equipment currently used in CAD and 3D graphics programming.
7.2 Specific objectives	 Develop the capacity to p implement projects in automotive design;
	 Develop skills on three-dimensional modelling of parts and assemblies;
	Develop skills in using adequate CAD programs to accurate and fast solving
	of graphics representations.
	Develop skills in 3D graphics programming.
	 Develop skills in specific programming CAD / CAE languages.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Introduction. The aim of the course. Framing 3D	Interactive lecture	2 hours	
modeling and programming in assisted			

engineering Current automotive design		
requirements. Product development using CAD /		
CAE and 3D graphics.		
3D graphics-aided design: defining basic elements	Interactive lecture	2 hours
and algorithms.		
Geometric modeling – Curve entities: analytic and	Interactive lecture	2 hours
synthetic Surface entities: Ruled tabulated Coons		2 110015
Bezier and B-spline surfaces. Advance Surface		
modeling.		
Methods of creating solid models: Boundary	Interactive lecture	2 hours
Representation (B-rep) Fuler operator		2 110015
Fuler/Poincare formula. Constructive Solid		
Geometry (CSG), primitive solids, Boolean		
operations. Parametric Modeling, feature-based		
modeling.		
Basics of assembly. Top-Down and Bottom-Up	Interactive lecture	2 hours
design, degrees of freedom, mating components		
Architecture CAD software. CAD development	Interactive lecture	2 hours
kernels. Typical functionality of professional CAD		
software. Commercial CAD software - features and		
performance.		
Intelligent CAD systems (KBD). Knowledge	Interactive lecture	2 hours
representation. Description of the Intelligent CAD		
systems.		
CAD applications programming using Visual Basic.	Interactive lecture	4 hours
Syntax elements. Common programming		
techniques.		
3D graphics programming using OpenGL.	Interactive lecture	4 hours
Algorithms for 3D graphics programming. Modeling		
of primitives using OpenGL. Generic surface		
modeling. 3D transformations. 3D viewing.		
Advanced lighting techniques. Visualization		
techniques: perspective view, rendering, lighting,		
image control.		
Computer animation. Methods for obtaining	Interactive lecture	2 hours
frames. Method "keyframe" (keyframes).		
Simulation method. Techniques for obtaining		
frames. Creating animations using OpenGL and		
VRML languages.		
Demonstration applications of CAD systems and	Interactive lecture	4 hours
advanced programming algorithms and		
visualization of 3D graphics in automotive design.		
Bibliography		
1. Gîrbacia Florin, Computer Aided Design: course not	es, Editura Universității Tran	silvania din Brașov, 2020. ISBN 978-
606-19-1332-9.		
2. Gîrbacia, F. Computer Aided Design and Graphics P	rogramming. Editura Univers	ită ii Transilvania, Brașov, 2016.
2 Talabă D. Razolo CAD Drojoctaro acietată do calcu	ilator Editura Universită ii Tr	ancilyania Pracov 2000

3. Talabă, D., Bazele CAD. Proiectare asistată de calculator. Editura Universită ii Transilvania, Brașov, 2000.

4. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universită ii Transilvania Brașov, 2012.

5. Preda,I., Inginerie asistată de pentru autovehicule, Editura Universită ii Transilvania din Brașov, 1998.

- 6. C. Anghel, G. Şimon, Grafică Tehnică Asistată de Calculator, Editura Risoprint, Cluj-Napoca, 2008.
- 7. D. Dragomir, CAD Proiectare asistată de calculator pentru inginerie mecanică, Editura Teora, 1996.

8. Zeid, I., Mastering CAD CAM, McGraw Hill, 1991.

9. Lee, Kunwoo, Principles of CAD/CAM/CAE Systems, Addison/Wesley, 1999.

10. Hearn, D., Baker P., "Computer Graphics with OpenGL", Prenticel Hall, 2003.

11. Foley J. D., Van Dam A., Feiner S. K., Hughes J. F., Computer Graphics - Principles and Practice, Second Edition in C, Pearson Education, 2003.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Getting on the use and configuration of CATIA	Interactive lecture,	2 hours	
program, specific terms. Sketching techniques.	exercises and examples,		
Sketcher CATIA Module. Constraints modeling	individual work		
tools. Profile modeling tools. Operation modeling			
tools.			
Solid modeling module. CATIA Part Design module.	Interactive lecture,	4 hours	
Sketch-Based Modelling Tools Features. Surface-	exercises and examples,		
Based Features. Dress-up Features.	individual work		
Transformation Features. Boolean Operations.			
Creating models for assemblies, CATIA Assembly	Interactive lecture,	2 hours	
Design module. Product Structure Tool assembly	exercises and examples,		
tools. Constraints Tool assembly tools. Features	individual work		
Assembly assembly tools. Applications in vehicle			
design.			
CATIA CAD applications programming using Visual	Interactive lecture,	6 hours	
Basic. Creating script files. Saving and running a	exercises and examples,		
script file. Creating GUI.	individual work		
OpenGL programming applications for automotive	Interactive lecture,	2 hours	
design.	exercises and examples,		
	individual work		
VRML programming applications for automotive	Interactive lecture,	6 hours	
design.	exercises and examples,		
	individual work		
Developing applications in automotive design.	Interactive lecture,	6 hours	
	exercises and examples,		
	individual work		

Bibliography

1. Gîrbacia Florin, Computer Aided Design: course notes, Editura Universității Transilvania din Brașov, 2020. ISBN 978-606-19-1332-9.

2. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.

3. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universită ii Transilvania Brașov, 2012.

4. Gîrbacia Florin, Duguleană Mihai (2019): Virtual and augmented reality in automotive design and maintenance:

course notes, Editura Universitatii Transilvania din Brasov, ISBN 978-606-19-1124-0.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical knowledge underpins the latest approaches in programming and 3D modeling for the field of automotive design. The analytical curriculum is consistent with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage			
			of the final grade			
10.4 Course	The ability to apply the	Written exam	50%			
	knowledge of design and					
	assisted graphics					
10.5 Seminar/ laboratory/	The ability to use modern	Solving practical applications	50%			
project	CAD and graphic					
	programming techniques,					
	skills and tools					
10.6 Minimal performance standa	10.6 Minimal performance standard					
Knowledge of the fundamentals of CAD graphics programming						
Modeling an interactive virtual 3D environment for engineering applications						
Carrying out laboratory work						
The grades obtained for the project and exam activity must be at least 5						

This course outline was certified in the Department Board meeting on 20/092024. and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
Dean	Head of Department
J. Rosca	HO
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA, Guy
Course holder	Holder of seminar/ laboratory/ project

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design (in English)

2. Data about the course

2.1 Name of cour	se		Dynamics of multibody systems					
2.2 Course convenor			Pro	Prof.dr.ing. Antonya Csaba				
2.3 Seminar/ laboratory/ project		Pro	Prof.dr.ing. Antonya Csaba					
convenor								
2.4 Study year	1	2.5 Semester	1	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CFC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/1/1
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/14/1
the curriculum					4
Time allocation					hours
Study of textbooks, course supp	ort, bib	liography and notes			60
Additional documentation in libraries, specialized electronic platforms, and field research				35	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays				22	
Tutorial				0	
Examinations				2	
Other activities				0	
3.7 Total number of hours of student activity 119					
3.8 Total number per semester 175					

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	•
4.2 competences-related	Basic knowledge of mechanics

7

5. Conditions (if applicable)

5.1 for course development	Classroom, video projector
5.2 for seminar/ laboratory/	Laboratory with computers
project development	

	C.2 Competences to carry out scientific research.
	L.O.2.1 To carry out scientific research, to conceive or create new knowledge by formulating
	questions in the field by researching, improving or developing concepts, theories, models, techniques,
	tools, software or operational methods and by using methods and techniques scientific;
	L.O.2.2 To gather information about current trends and styles regarding vehicles and the need for
	new products or services;
	L.O.2.3 To prepare reports that describe the results and processes of scientific or technical research
	or evaluate its progress. These reports help researchers keep up with recent discoveries;
	L.O.2.4 To prepare research documents or give presentations to report the results of an ongoing
	research project, indicating the analysis procedures and methods that led to the respective results, as
	well as possible interpretations of the results;
	L.O.2.5 To synthesize information, critically interpret and summarize new and complex information
	from various sources;
	C.4 Skills to use CAD-CAM-CAE systems
	L.O.4.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
	analysis and optimization of an industrial drawing or model;
	L.O.4.2 using computer-aided engineering programs to perform stress analyzes for engineering projects.
	C.5 Ability to design and develop software
	L.O.5.1 to develop software for motor vehicles and related systems;
	L.O.5.2 understand and apply the principles of programming and software development technologies
	in the automotive industry;
	L.O.5.3 to evaluate and choose suitable platforms, programming languages and software technologies
	for projects in the automotive industry;
	L.O.5.4 to develop software applications to improve the functionality, performance and safety of
	motor vehicles;
	L.O.5.5 to test and debug software to ensure the proper and safe operation of vehicle systems;
	L.O.5.6 to integrate software systems in the global architecture of motor vehicles, taking into account
	security and compatibility aspects;
	L.O.5.7 manage automotive software development projects, including planning, budgeting and
ces	monitoring progress.
ten	C.6 Skills to use CAD-CAM-CAE systems
upe	L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
cor	analysis and optimization of an industrial drawing or model;
nal	L.O.6.2 the use of computer-aided manufacturing (CAM) programs to control machines and machine
ssic	tools in the creation, modification, analysis or optimization processes as part of the manufacturing
ofe	processes of motor vehicle parts;
Ъ	L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.
	Ct.1 Competences for integration into specific activities at the workplace and technical competencies, in
es	conditions of autonomy and professional independence
enc	L.O.1.1 to show determination, making sustained efforts for success pursuing clear objectives, to make
pet	decisions choosing from several alternative possibilities;
mo	L.O.1.2 to show initiative, to be proactive,
sal (L.O.1.3 to provide advice to colleagues, offering suggestions on the best way forward;
ver	L.O.1.4 to be able to work in a team but also independently develop their own ways of doing things,
ans	showing the desire to learn,
Ļ	L.O.1.5 to analyze new problems, based on creative, innovative, analytical, and holistic thinking;

Ct.2 Communication and teamwork skills
L.O.2.1 to carry out their work in a team;
L.O.2.2 to address an audience, give a speech, make a presentation;
L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
conferences or online events;
L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	• The objective of this course is to present the theoretical knowledge of the foundations
objective	of Multibody Dynamics with applications in Automotive Engineering: analytical
	foundations for the systematic generation of motion equations, numerical methods for
	their solution and interpretation of simulation results.
7.2 Specific objectives	Become familiar with methodology, algorithms and software for kinematic and
	dynamic simulation of complex mechanical systems, automotive systems (automotive
	and mechanical subsystems composed of rigid elements)
	• Given a mechanical system, understand how to generate in a systematic and general
	fashion the equations that govern the time evolution
	• Have a basic understanding of the techniques (numerical methods) used to solve the
	equation of motion for multibody systems
	• Be able to use software to simulate and interpret the dynamics associated with
	complex mechanical systems
	• Laboratory exercises and the project aimed at introducing multibody systems simulation
	tools: software tools MSC.Adams and/or Matlab-Siscape-Multibody

8. Content

8.1 Course	Teaching methods	Number	Remarks
		of hours	
Introduction. Background, classification of methods,	The use of classical and	2	
history, modelling fundamentals, computational	multimedia teaching		
methods.	techniques (computer, video		
	projector)		
Kinematic analysis of multibody systems (MBS)	Teaching based on significant	10	
Analysis of elements in MBS	examples to provide		
Bodies: classification, representation	motivation and explanation of		
Connections between bodies: joints, degrees of	the basic concepts and specific		
freedom	methods, highlighting the		
The degree of freedom of the MBS, loops, topology	relevant ideas		
map			
Translation and rotation; coordinate transformation			
Velocity and acceleration			
Generalized coordinates			
Formulation of the kinematic model			
Absolute and relative constraints			
Constraint equations imposed by joints			
Driver constraints, motion			
Kinematic analysis: equations for kinematics			
Solving nonlinear equations for the kinematic model,			

Jalon, J.G., Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems – The real time challenge, Springer-Verlag, 1994.

Schiehlen W. O., Multi-body Systems Handbook, Springer Verlag, Berlin-New York, 1990.

Nikravesh P. E., Planar Multibody Dynamics: Formulation, Programming and Applications, Taylor & Francis Group, 2008.

Hahn, R., Rigid Body Dynamics of Mechanisms, Springer, 2002

Talabă D., Mecanisme Articulate. Proiectare Asistată de Calculator, Transilvania University Press, 2001

Negrut D., Kinematics and Dynamics of Machine Systems, University of Wisconsin, Madison

Geradin, M., Cardona A., Flexible Multibody Dynamics, Wiley, 2001.

Antonya, Cs., Simularea grafică a sistemelor de corpuri, Editura Transilvania University Press, 2004.

Antonya, Cs., Boboc, R.G., Mechanisms: theory and examples. Transilvania University Press, 2023.

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number	Remarks
		of hours	
1. Kinematic analysis of MBS	Experimental activity on	2	
2. Dynamic analysis of MBS with rigid elements	multibody systems developed	2	
3. Dynamic analysis of MBS with rigid elements,	with Matlab-Simscape-	2	
equilibrium	Multibody or MSC ADAMS.		
4. Inverse dynamics	Explanations, examples,	2	
5. Presentation of results and graphical simulation of MBS	interactivity, case studies	2	
6. Optimization of MBS		2	
7. Evaluation.		2	
Project:		7 x 2	
Theoretical subject: write a report of 4-5 pages about			
an imposed theoretical topic.			
MBS simulation in MSC ADAMS or Matlab-Simscape-			
Multibody (kinematic and/or dynamic). Write a 5-6			
pages report about the model with:			
Model description			
Simulation premises			
Initial conditions			
Components, degrees of freedom, joints, forces,			
masses			
Building the model			
Results, interpretation of results			
The model will have more than 4 bodies. It can be a			
kinematic or dynamic simulation, but motivate your			
decision.			
Bibliography	·		
ADAMS User Guide MSC Software			
Haug, E. J., Computer Aided Kinematics and Dynamics of	Mechanical Systems: Basic Metho	ods, Wiley, 1	989.
Shahana A. A. Dynamics of Multibody Systems Cambr	idgo University Press, 2005		

Shabana, A. A., Dynamics of Multibody Systems, Cambridge University Press, 2005. Wittenburg, J. Dynamics of Multibody Systems, Springer-Verlag, 2008.

Schiehlen W. O., Multi-body Systems Handbook, Springer Verlag, Berlin-New York, 1990.

Nikravesh P. E., Planar Multibody Dynamics: Formulation, Programming and Applications, Taylor & Francis Group, 2008.

Hahn, R., Rigid Body Dynamics of Mechanisms, Springer, 2002

Talabă D., Mecanisme Articulate. Proiectare Asistată de Calculator, Transilvania University Press, 2001

Negrut D., Kinematics and Dynamics of Machine Systems, University of Wisconsin, Madison Antonya, Cs., Simularea grafică a sistemelor de corpuri, Editura Transilvania University Press, 2004. Antonya, Cs., Boboc, R.G., Mechanisms: theory and examples. Transilvania University Press, 2023.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Studying theoretical subjects and applications ensures the formation of skills related to the design and analysis of multibody systems of motor vehicles and understanding the interaction of mechanical systems. These skills are needed in the design and analysis of modern vehicles. Completing the course involves knowing and using software tools for designing modern mechanical systems in an integrated and optimal approach.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage				
			of the final grade				
10.4 Course	Using basic knowledge to	Oral examination	33%				
	explain and interpret						
	algorithms for multibody						
	systems						
10.5 Seminar/ laboratory/	According to the project	Presentation	67%				
project	subject (theoretical and						
	simulation)						
10.6 Minimal performance standard							
Use basic knowledge to explain and interpret algorithms for multibody systems,							
Elaboration of a project with an imposed theme,							
 The grades obtained for the homework and exam must be at least 5. 							

This course outline was certified in the Department Board meeting on 20/092024. and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof.dr.ing. Mihai DUGULEANĂ,
Dean	Head of Department
J. Rosca	· tr
Prof.dr.ing. Csaba ANTONYA,	Prof.dr.ing. Csaba ANTONYA,
Course holder	Holder of seminar/ laboratory/ project
ap	ap

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;

- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

,1 0	
1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transports
1.4 Field of study ¹⁾	Master of Automobiles Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course Tribology								
2.2 Course convenor Prof. Ph.D. Eng. Radu Velicu/ Prof. Ph.D. Eng. Daniel Munteanu								
2.3 Laboratory			Prof. Ph.D. Eng. Radu Velicu/ Conf. Ph.D. Eng. Camelia Gabor					
2.4 Study year	Ι	2.5 Semester	1	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	DAP
						status	Attendance type ⁴⁾	DI

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	out of which: 3.	2 lecture	2	3.3 seminar/ laboratory/ project	0/2/0	
3.4 Total number of hours in	56	out of which: 3.	5 lecture	28	3.6 seminar/ laboratory/ project	0/28/0
the curriculum						
Time allocation						hours
Study of textbooks, course supp	ort, bib	liography and not	es			20
Additional documentation in libraries, specialized electronic platforms, and field research					28	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					30	
Tutorial 1					10	
Examinations				6		
Other activities			-			
3.7 Total number of hours of stu	ident a	ctivity 94				
3.8 Total number per semester		150	1			

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	Solid mechanics; Strength of Materials, Machines Parts
4.2 competences-related	Knowledge and abilities to work in one or more standard or high-level
	programming languages (e.g., Excel, Matlab)

6

5. Conditions (if applicable)

5.1 for course development	classroom, projector
5.2 for seminar/ laboratory/	computer room, dedicated software, testing devices
project development	

	C.2 Skills in the Design of Vehicle Systems, Equipment, and Components
	L.O.2.1 Ability to study, interpret, and capitalize on the technical resources specific to the automotive
	manufacturing industry.
	L.O.2.2 Development of testing protocols for vehicle components and equipment.
	CP.3 Skills in Conducting Practical Tests and Measurements
	L.O.3.1 Perform experimental, environmental, and operational testing on models, prototypes, or
	systems and
	equipment to test their strength and capabilities under normal and extreme conditions.
	L.O.3.2 Interpret and analyze data collected during testing to draw conclusions, identify new
	perspectives, or
	propose solutions.
	L.O.3.3 Record data that was specifically identified during previous trials to verify whether testing
	produces
	specific results.
	L.O.3.4 Collect data and statistics for testing and evaluation to generate pattern statements and
	forecasts, aiming to uncover useful information in the decision-making process.
	C.4 Skills in Conducting Scientific Research
	L.O.4.1 Conduct scientific research, create or develop new knowledge by formulating domain-specific
	questions, through research, improvement, or development of concepts, theories, models, techniques,
	tools, software, or operational methods using scientific methods and techniques.
	L.O.4.2 Manage research data.
	L.O.4.3 Operate scientific research and laboratory equipment.
	L.O.4.4 Synthesize information, critically interpret, and summarize new and complex information
	from various sources.
	C.6 Skills to use CAD-CAM-CAE systems
	L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
	analysis and optimization of an industrial drawing or model;
	C.7 Skills in Developing Manufacturing and Assembly Technologies for Vehicles, and Testing and Validation
	Procedures for Vehicle Components, Systems, and Equipment
	L.O.7.1 Apply and develop specific design criteria, procedures, and methods for modern vehicle
	manufacturing, assembly, and maintenance technologies.
	L.O.7.2 Operate precision measuring equipment.
	L.O.7.3 Develop testing and validation protocols to allow a variety of analyses for vehicle components
	and systems.
	L.O.7.4 Evaluate vehicle system performance using specific testing procedures and equipment.
es	L.O.7.5 Identify potential issues and find optimal solutions.
enc	C.8 Ability to Improve Safety and Adhere to Standards for Technical Equipment Safety
pet	L.O.8.1 Inspect equipment used during industrial activities, such as manufacturing or construction
ШO	equipment, to ensure that the equipment complies with safety and environmental legislation.
) lar	L.O.8.2 Integrate mechanical, electrical, electronic, software, and safety engineering in vehicle design,
sior	such as for trucks, vans, and cars.
ofes	L.O.8.3 Apply basic safety standards and technical standards specific to equipment to prevent risks
Pre	associated with the use of technical equipment at the workplace.

-							
			CT.1 Skills for Integration into Workplace-Specific Activities and Technical Skills with Autonomy and				
			Professional Independence				
			L.O.1.1 Take responsibility, be accountable for personal decisions, and show readiness to work while				
	<u>n</u>	ces	honoring commitments.				
	vers	eter	L.O.1.2 Demonstrate determination, making sustained efforts to succeed with clear objectives, and make				
	ans	mpe	decisions by choosing among several alternatives.				
	Τ	Ō					
			L.O.1.3 Show initiative and be proactive.				
			L.O.1.4 Demonstrate self-reflection, quick thinking, and accept constructive criticism and guidance from				
			colleagues or superiors.				
			L.O.1.5 Apply scientific, technological, and engineering knowledge by processing complex information,				
		operating technological installations, tools, or digital equipment.					
			L.O.1.6 Identify problems and make decisions to solve them.				
			L.O.1.7 Comply with standards, regulations, and guidelines related to a specific field or sector and apply them				
			in daily work activities.				
			L.O.1.8 Plan activities, manage schedules and resources to complete tasks on time.				
			CT.2 Communication and Teamwork Skills				
			L.O.2.1 Work effectively in a team.				
			L.O.2.2 Address an audience, deliver a speech, or make a presentation.				
1			L.O.2.3 Use simple digital tools and technologies to communicate, interact, and collaborate with others.				
			L.O.2.4 Be capable of training other team members and organizing information, objects, and resources.				

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• The acquisition by students of fundamental concepts in tribology as a
	science that addresses phenomena of friction, lubrication, and wear in
	relation to practical applications.
	• The purpose of the lab is to introduce students to high-performance
	equipment for analyzing friction, lubrication, lubricant properties, and wear.
7.2 Specific objectives	Understanding the phenomena and mechanisms of friction
	Understanding the role of lubrication and the necessary properties of
	lubricants
	Understanding the phenomena of boundary, mixed, and hydrodynamic
	lubrication
	Understanding the mechanisms of wear development, conditions of
	occurrence, and methods of reduction
	Developing practical skills for operating specific equipment to measure
	defining parameters for friction, lubrication, and wear phenomena

8. Content

8.1 Course	Teaching	Number of	Remarks
	methods	hours	
1.Introduction (meaning of friction, lubrication and wear).	Lectures,	2 hrs	
	discussion		
2.Dry friction (surfaces topography of solids, model of contact, friction and	Lectures,	2hrs	
wear, stick-slip)	discussion		
3.Wear (Abrasive, erosive and cavitation wear, fatigue wear (sliding,	Lectures,	2hrs	
rolling)	discussion		
4.Wear (Abrasive, erosive and cavitation wear, fatigue wear (sliding,	Lectures,	2hrs	

rolling)	discussion		
5.Lubricants (dynamic and kinematic viscosity, viscosity-temperature	Lectures,	6hrs	
relationship, viscosity-pressure relationship, measurements,	Discussion		
classification, types of lubricants and their description - mineral and			
synthetic oils, greases; additives)			
6.Hydrodynamic lubrication (Conditions for HDL, simplifying assumptions,	Lectures,	6hrs	
Reynolds equation, simplifications, bearing parameters from Reynolds eq.,	Discussion		
application for journal bearings - pressure distribution, load capacity,			
friction, power loss; Stribeck curve, squeeze films and Reynolds eq.)			
7.Improving the tribological properties of metallic parts by diffusion	PPT	4hrs	
surface treatments - surface modification by altering surface chemistry	presentation,		
(high temperature diffusion treatments: carburizing and carbonitriding:	discussion		
low temperature diffusion treatments: nitriding and nitrocarburizing –			
nrinciples technological parameters mechanical and tribological			
surface properties before and after treatment)			
8 Integrating tribological coating systems into the surfaces design	PPT	4hrs	
process – surfaces modification by adding new material onto the	nresentation	2012	
surface (tribological coatings and their properties, denosition	discussion		
technologies and technological parameters – advantages and			
disadvantages and technological parameters – advantages and			
O Micro, papamechanics (micro, papatribology (tribological thin films	таа	Ohro	
and multilayers, surfaces tangeraphy by AFM and STM, micro, scale	PPI	21115	
and muthayers, surfaces topography by AFM and STM, micro-scale	presentation,		
riction, atomic scale friction, directionality effect on microfriction,	discussion,		
micro/hanoindentation – hardness and elastic modulus, micro/hano			
40 Misure and scheduler (arises and strikely to this denied this files	DDT	26	
10.Micro-nanomecnanics/micro-nanotribology (tribological thin films		Zhrs	
and multilayers, surfaces topography by AFM and STM, micro-scale	presentation,		
friction, atomic scale friction, directionality effect on microfriction,	discussion,		
micro/nanoindentation – hardness and elastic modulus, micro/nano			
wear and scratching, boundry lubrication			
Bibliography			
1. Gohar, R., Rahnejat, H. Fundamentals of tribology, Imperial College Pre	ess, 2012		
2. Stachowiak, G.W., Batchelor, A.W. Engineering tribology, Elsevier, 3rd	ed. 2005		
3. John Williams - Engineering Tribology, 2005			
4. Shizhu Wen, Ping Huan - Principles of Tribology, 2012			
5. Ohring, M., Materials Science of thin films – Deposition & Structure, 2'	nd edition, Academi	: Press, San D	iego, 2012.
6. Campbell, D.S., Handbook of Thin Film Technology, eds. L.I. Maissel an	d R. Glang, McGrav	/-Hill, New Yo	rk, 1970.
7. CSM Instruments, Manual of Instrumentation methods, Pesseux, Swit	zerland, 2011.		
8. Ohring, M., Engineering Materials Science, Academic Press, San Diego,	, 1995.		
9. Hoffman, R.W., Physics of thin films, academic Press, New York, 1996			
10.Nix, W.D., Metallurgical Trans., 20A, 2217, (1989).			
11. Daniel Munteanu, Camelia Gabor, ș.a., Straturi subtiri de tip Ti-Si-C si T	Γi-O-C obtinute pri	n pulverizare r	eactiva in
sistem magnetron, Editura Universitatii Transilvania din Brasov, 2007			
8.2 Laboratory	Teaching-	Number of	Remarks
	learning	hours	
	methods		
1. Tribometer (description, specifications, destinations, use)	On site	2	Weekly

report

presentation

2. Ball on disk continuous test for dry, boundary or mixed lubrication	Experimental	2	Weekly
(Stribeck curve)	reading and		report
3. Pin on plate oscillation test for dry, boundary or mixed lubrication	analyse	2	Weekly
			report
4. Block on ring test for boundary or mixed lubrication		2	Weekly
			report
5. Ball on plate oscillation test for static and dynamic friction, stick – slip		2	Weekly
test			report
6. General presentation of laboratory equipment for surface testing:		2	Weekly
ball-on-disk tribometer (CSM Instruments), Compact platform (for			report
micro- and nano-level indentation and scratching).			
7. Wear tests using the pin-on-disk tribometer. Determination of wear		2	Weekly
and friction coefficients under various conditions.			report
8. Testing adhesion of tribological thin-films using the scratch-testing		2	Weekly
method.			report
9. Surfaces topography evaluation at micro and nano levels (mechanic	General	2	Weekly
profilometer method and Atomic Force Microscopy method).	presentation		report
10. Establishing coatings/thin film thickness and adhesion; Ball-cratering	and principle of	2	Weekly
technique and scratch test.	analysis		report
11. The indentation method; establishing the elastic modulus and		2	Weekly
indentation hardness of coatings and thin films.			report
12. Tribology; establishing the dynamic friction coefficient for coatings and		2	Weekly
thin films using the ball-on-disk tribometer.			report
13. Tribology; establishing the wear rate of coatings and thin films using		2	Weekly
Ball-on-disk tribometer and using the profilometer method.			report
14. Deposition of tribological purpose thin films on stainless steel.		2	Weekly
			report
Bibliography			
1. UMT3, Reference manual, 2011			
2. UMT3, Application manual, 2012			
3. Bhushan, B., Handbook of Micro/nanotribology, Second edition, CRC F	^p ress, LLC, 1999.		

4. CSM Instruments, Manual of Instrumentation methods, Pesseux, Switzerland, 2011.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

In corroboration with Industrial Companies interests.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Theory understanding	Grid test, objective evaluation	50%
	Correct use of terminology		
10.5 Seminar/ laboratory/	Ability to recognize the	Practical work/oral	50%
project	phenomena related to	presentation, subjective	
	friction, lubrication and wear	evaluation	

	Efficient communication			
	Correctness of graphical			
	representations and numeric			
	calculus			
	Correct Conclusions			
10.6 Minimal performance standa	rd			
The passing grade for both the co	urse and the laboratory is obtaine	ed by demonstrating the ability to	identify and define	
the main processes in tribology (friction, lubrication, wear) and knowledge of the main practical methods used in the				
tribology laboratory.				

This course outline was certified in the Department Board meeting on 20/092024. and approved in the Faculty Board meeting on 30/09/2024.

Prof. Ph.D. Eng. Ioan Călin ROȘCA,	Prof. Ph.D. Eng. Mihai DUGULEANĂ
J. Roscan Dean	H
	Head of Department
Course holder,	Holder of laboratory,
Prof. dr. ing. Radu VELICU	Prof. dr. ing. Radu VELICU
Rd	Rld
Course holder,	Holder of laboratory,
Prof. dr. ing. Daniel MUNTEANU	Conf. dr. ing. Camelia GABOR

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: **FC** (fundamental course) / **DC** (course in the study domain)/ **SC** (speciality course)/ **CC** (complementary course); for the Master level, select one of the following options: **PC** (proficiency course)/ SC (synthesis course)/ **AC** (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	se		Practice for research and development I					
2.2 Course convenor								
2.3 Seminar/ laboratory/ project			Pro	f. Ph. D. eng. Florin GÎF	RBAC	A		
convenor								
2.4 Study year	1	2.5 Semester	1	2.6 Evaluation type	С	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	12	out of which: 3.2 le	ecture	0	3.3 seminar/ laboratory/ project	0/0/12
3.4 Total number of hours in	168	out of which: 3.5 le	ecture	0	3.6 seminar/ laboratory/ project	168
the curriculum						
Time allocation				hours		
Study of textbooks, course support, bibliography and notes				20		
Additional documentation in libraries, specialized electronic platforms, and field research					20	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					16	
Tutorial					0	
Examinations						4
Other activities						20
3.7 Total number of hours of stu	ident a	ctivity 60				
3.8 Total number per semester		228				

3.9 Number of credits ⁵⁾	

4. Prerequisites (if applicable)

4.1 curriculum-related	٠	Elementary concepts of automotive engineering, computer-aided design
4.2 competences-related	•	Operating with fundamental concepts of engineering sciences.

4

5. Conditions (if applicable)

5.1 for course development	• projector
	lecture notes
	Windows operating system, Catia V5, Matlab
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers
	Windows operating system, Catia V5, Matlab

	C1. Skills for identifying needs for design
	L.O.1.1 To identify customer needs, using appropriate questions and active listening to identify customer
	expectations, wishes and requirements according to products and services;
	L.O.1.2 To interpret the technical requirements of customers, analyzing, understanding and applying the
	information provided regarding the technical conditions;
	L.O.1.3 To define technical design requirements, by specifying the technical properties of the goods,
	materials, methods, processes, services, systems, software and functionalities, by identifying and
	addressing the specific needs that must be met according to the client's requirements;
	L.O.1.4 To ensure the connection with the engineers from the other departments to ensure a common
	understanding and to discuss the design, development and improvement of the products;
	L.O.1.5 To make design sketches to contribute to the elaboration and communication of design concepts.
	C2. Competences in the design of systems, equipment and vehicle components
	L.O.2.1 the ability to study, interpret and capitalize on technical resources specific to the motor vehicle
	manufacturing industry;
	L.O.2.2 the use of advanced concepts, techniques and principles regarding the design of modern systems
	and equipment intended for motor vehicles;
	L.O.2.3 applying mathematical methods and using calculation and simulation programs to perform
	technical analyzes and design solutions for specific problems;
	L.O.2.4 designing prototypes of vehicle components and systems by applying advanced engineering
	principles;
	C4 Competences to carry out scientific research.
	L.O.4.5 To synthesize information, critically interpret and summarize new and complex information from
es	various sources;
enc	L.O.4.6 To interact professionally in research and professional environments;
Ipet	L.O .4.7 To apply systematic research methods and to communicate with the relevant parties to find
соц	specific information, evaluating the research results in view of the relevant estimation of the information,
nal	as well as the related technical systems and their evolutions;
ssio	L.O .4.8 To provide proof of in-depth knowledge and complex understanding of the research field, including
ofes	responsible research, ethical principles and scientific integrity in research matters, respect for private life
Ъг	and GDPR requirements, related to research activities in - a certain discipline.
	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
oetences	L.O.1.3 to show initiative, to be proactive,
	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
	operating technological installations, tools or digital equipment;
lmo	L.O.1.5 identify problems and make decisions to solve them;
sal c	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
vers	them in his day-to-day activity;
ans	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
1	

Ct2. Communication and teamwork skills
L.O.2.1 to carry out their work in a team;
L.O. 2.2 to address an audience, give a speech, make a presentation;
L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
conferences or online events;
L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
compromise solutions, resolving conflicts;
L.O.2.6 to be able to lead others, coordinate a team;
L.O.2.7 be able to train other team members and organize information, objects and resources;
L.O.2.8 to motivate others, stimulating action;
L.O.2.9 to develop teams, managing time and delegating responsibilities;
L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	Apply scientific knowledge to solve automotive engineering problems.
objective	
7.2 Specific objectives	• Practical skills for simulating the development processes of automotive products.
	Development of programming skills in specific CAD languages.
	Theoretical and applicative knowledge related to multibody systems
	Practical simulation and analysis skills with MB systems software packages
	Theoretical and applied knowledge related to the modeling and simulation of the
	physical processes
	• Development of modern software, innovative methods, principles and simulation
	procedures
	Development of methods for evaluating research and development projects
	Developing a management strategy using modern principles and methods

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Not the case			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Advanced design and simulation in CATIA V5, using	Video projector		
standardized computing, component libraries	presentations, examples,		
Advanced design elements in CATIA V5 software	experiments, case studies		
using appropriate controls	related to multibody	160	
Development of VRML 3D graphics application for	systems, programming in	100	
automotive design	specific CAD languages,		
Virtual prototyping using MB systems	3D graphic programming		
Group projects			

Bibliography

1. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.

2. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universit ii Transilvania Brașov, 2012

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Through its content and through the elaboration of the thematic portfolio (the study), the masters acquire competences in accordance with the expectations of the epistemic community and of the producers in the car market. The analytical program is in line with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage			
		methods	of the final grade			
10.4 Course						
10.5 Seminar/ laboratory/	Modelling of proposed CAD models	Oral presentation	100%			
project	Completion of MBS simulation					
	Involvement in practical activities					
	Efficiency in verbal communication					
	(presentation)					
10.6 Minimal performance standard						
Knowledge of CAD	ND fundamentals					
Realization of an N	of an MBD simulation for engineering applications					
Realization of prac	practical project					
• The marks for proj	project work must be at least 5.					

This course outline was certified in the Department Board meeting on 20/092024. and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
J. Roscan Dean	HO
	Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Effert	G fury-
Course holder	Holder of seminar/ laboratory/ project

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);

- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design (in English)

2. Data about the course

2.1 Name of course		Adv	Advance Simulation in Automotive Design					
2.2 Course convenor		Prof.dr.ing. Antonya Csaba						
2.3 Seminar/ laboratory/ project		Pro	Prof.dr.ing. Antonya Csaba					
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CFC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week 4		out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/0/2
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/0/28
the curriculum					
Time allocation					hours
Study of textbooks, course supp	ort, bib	liography and notes			67
Additional documentation in libraries, specialized electronic platforms, and field research					15
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					35
Tutorial 0					0
Examinations 2				2	
Other activities			0		
3.7 Total number of hours of student activity 119					
3.8 Total number per semester		175			

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	•
4.2 competences-related	Basic knowledge of mechanics

7

5. Conditions (if applicable)

5.1 for course development	Classroom, video projector
5.2 for seminar/ laboratory/	Laboratory with computers
project development	

•	
	C.2 Competences to carry out scientific research.
	L.O.2.1 To carry out scientific research, to conceive or create new knowledge by formulating
	questions in the field by researching, improving or developing concepts, theories, models, techniques,
	tools, software or operational methods and by using methods and techniques scientific;
	L.O.2.2 To gather information about current trends and styles regarding vehicles and the need for
	new products or services;
	L.O.2.3 To prepare reports that describe the results and processes of scientific or technical research
	or evaluate its progress. These reports help researchers keep up with recent discoveries;
	L.O.2.4 To prepare research documents or give presentations to report the results of an ongoing
	research project, indicating the analysis procedures and methods that led to the respective results, as
	well as possible interpretations of the results;
	L.O.2.5 To synthesize information, critically interpret and summarize new and complex information
	from various sources;
	C.4 Skills to use CAD-CAM-CAE systems
	L.O.4.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
	analysis and optimization of an industrial drawing or model;
	L.O.4.2 using computer-aided engineering programs to perform stress analyzes for engineering projects.
	C.5 Ability to design and develop software
	L.O.5.1 to develop software for motor vehicles and related systems;
	L.O.5.2 understand and apply the principles of programming and software development technologies
	in the automotive industry;
	L.O.5.3 to evaluate and choose suitable platforms, programming languages and software technologies
	for projects in the automotive industry;
	L.O.5.4 to develop software applications to improve the functionality, performance and safety of
	motor vehicles;
	L.O.5.5 to test and debug software to ensure the proper and safe operation of vehicle systems;
	L.O.5.6 to integrate software systems in the global architecture of motor vehicles, taking into account
	security and compatibility aspects;
	L.O.5.7 manage automotive software development projects, including planning, budgeting and
ces	monitoring progress.
ten	C.6 Skills to use CAD-CAM-CAE systems
npe	L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
cor	analysis and optimization of an industrial drawing or model;
nal	L.O.6.2 the use of computer-aided manufacturing (CAM) programs to control machines and machine
ssic	tools in the creation, modification, analysis or optimization processes as part of the manufacturing
rofe	processes of motor vehicle parts;
Ā	L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.
	Ct.1 Competences for integration into specific activities at the workplace and technical competencies, in
es	conditions of autonomy and professional independence
enc	L.O.1.1 to show determination, making sustained efforts for success pursuing clear objectives, to make
ipet	decisions choosing from several alternative possibilities;
Tom	L.O.1.2 to show initiative, to be proactive,
sal (L.O.1.3 to provide advice to colleagues, offering suggestions on the best way forward;
sver	L.O.1.4 to be able to work in a team but also independently develop their own ways of doing things,
rans	showing the desire to learn,
Τı	L.O.1.5 to analyze new problems, based on creative, innovative, analytical, and holistic thinking;

ſ	Ct.2 Communication and teamwork skills
	L.O.2.1 to carry out their work in a team;
	L.O.2.2 to address an audience, give a speech, make a presentation;
	L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
	conferences or online events;
	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	The simulation process refers to performing experiments on models of
	automotive systems to predict how the real system would behave.
	• Understanding the dynamics of automotive systems and the purpose they
	serve in designing, analyzing, and controlling them.
	• Conceptualizing how a system is divided into subsystems and components
	to allow their synthesis.
7.2 Specific objectives	• Synthesis of mathematical models to represent the automotive systems'
	dynamic responses for analysis, design, and/or control.
	• Analysis of the dynamic characteristics of the automotive systems and their
	responses to inputs.
	• Methodical system design and synthesis by selecting its parameters to meet
	the specified criteria.
	• Control by using sensors and actuators to automate a process or system.
	Bond graph representation: structured graphical representation -
	establishes rules going from the design of models by phenomenological
	analysis to equation formatting.
	• Modelling in a non-causal way, allowing focusing on the physical description
	of the phenomena involved within the automotive systems.
	• Use of specific software programs for modeling, simulation, and control of
	integrated systems.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Introduction to:	The use of classical and	4	
Modeling vs. Simulation	multimedia teaching		
Design, analysis, or control of dynamic systems	techniques (computer,		
State-Space Modeling	video projector)		
Bond Graphs			
2. Bond Graph Modeling Concepts.	Teaching based on	12	
Basic Bond Graph Elements	significant examples to		
Basic bond graph elements: sources,	provide motivation and		
transformers/gyrators, junctions	explanation of the basic		
Causal bond graphs	concepts and specific		
Examples	methods, highlighting the		
	relevant ideas		
3. Bond Graph Synthesis and Equation		12	
Derivation			
Mathematical modeling of automotive systems			
Algebraic Loops and Derivative Causality			
The state space representation			

Inputs	into dynamic systems			
Laplace	e Transforms			
Transfe	er Function			
Impeda	ance Bond Graphs			
Time de	omain analysis			
Freque	ncy domain analysis			
Bibliog	raphy			
Mellod	ge, Patricia: A Practical Approach to Dynamica	l Systems for Engineers. Woo	odhead Publishing, 20	16
Javier A	A. Kypuros: System Dynamics and Control with	Bond Graph Modeling. CRC F	^D ress, 2013	
Dean C	. Karnopp, Donald L. Margolis, Ronald C. Roser	nberg: System Dynamics Moo	leling, Simulation, and	l Control of
Mecha	tronic Systems. John Wiley & Sons, 2012			
Claudiu	ı Pozna: Teoria sistemelor automate, Matrixro	m, 2010		
Antony	a, Cs., Boboc, R.G., Mechanisms: theory and ex	kamples. Transilvania Univers	sity Press, Brasov, 202	23.
Franço	is E. Cellier, Ernesto Kofman: Continuous Syste	em Simulation, Springer, 200	6	
Wolfga	ng Borutzky: Bond Graph Modelling of Engine	ering Systems, Springer, 201	1	
Antony	a, Cs.: Simularea grafică a sistemelor de corpu	ri. Transilvania University Pre	ess, Braşov, 2004	
8.2 Ser	ninar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
		methods		
Project	:	Experimental activity on	28	
1.	Theoretical Subject	system dynamics		
		developed with Siemens		
Write a	report of 4-5 pages about the topic from	AMESim or		
the foll	owing list:	Matlab/Simscape.		
1.	Bond graph modeling concepts	Explanations, examples,		
2.	Bond graph elements: mechanical –	interactivity, case studies		
transla	tional			
З.	Bond graph elements: mechanical –			
rotatio	n			
4.	Bond graph elements: electrical circuits			
5.	Bond graph elements: flow system			
6.	Bond graph elements: sources,			
transfo	ormers/gyrators, junctions			
7.	Causal bond graphs			
8.	Bond graph synthesis and equation			
derivat	ion			
9.	The state space representation			
10.	Laplace transforms, solving for the system			
respon	se			
11.	Impedance bond graphs			
12.	Time domain analysis			
13.	Frequency domain analysis			
2.	Practical subject			
Simula	tion in AMESIM or Matlab/Simscape model			
of an a	utomotive application			
Write a	report about the model with:			
	Model description			
	Simulation premises			

٥	Initial conditions							
	Components,							
	Building the model							
	Results, interpretation of results							
Bibliog	raphy							
Mellod	ge, Patricia: A Practical Approach to Dynamica	Il Systems for Engineers. Woo	odhead Publishing, 20	16				
Javier A	. Kypuros: System Dynamics and Control with	n Bond Graph Modeling. CRC F	Press, 2013					
Dean C	. Karnopp, Donald L. Margolis, Ronald C. Roser	nberg: System Dynamics Moc	leling, Simulation, and	l Control of				
Mechat	ronic Systems. John Wiley & Sons, 2012							
Claudiu	Pozna: Teoria sistemelor automate, Matrixro	m, 2010						
Antonya, Cs., Boboc, R.G., Mechanisms: theory and examples. Transilvania University Press, Brasov, 2023.								
François E. Cellier, Ernesto Kofman: Continuous System Simulation, Springer, 2006								
Wolfga	Wolfgang Borutzky: Bond Graph Modelling of Engineering Systems, Springer, 2011							
Antony	a, Cs., Simularea grafică a sistemelor de corpu	Antonya, Cs., Simularea grafică a sistemelor de corpuri. Transilvania University Press, Brașov, 2004						

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Studying theoretical subjects and applications ensures the formation of skills related to the integrated design of vehicle systems and understanding the interaction of mechanical systems with electrical/electronic control systems, respectively with hydraulic, pneumatic, thermal systems, etc. These skills are needed in the design and analysis of modern vehicles. Completing the course involves knowing and using software tools for designing modern mechanical systems in an integrated and optimal approach.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage				
			of the final grade				
10.4 Course	Using basic knowledge to explain and interpret algorithms for multibody systems	Oral examination	33%				
10.5 Seminar/ laboratory/ project	According to the project subject (theoretical and simulation)	Presentation	67%				
10.6 Minimal performance standard							
 Use basic knowledge to explain and interpret the vehicle's dynamic systems. Elaboration of a project with an imposed theme, 							

• The grades obtained for the imposed subject, project, and exam must be at least 5.

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof.dr.ing. Mihai DUGULEANĂ,	
J. Roscan	Head of Department	20

Prof.dr.ing. Csaba ANTONYA, Course holder Prof.dr.ing. Csaba ANTONYA, Holder of seminar/ laboratory/ project

refor

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course				ulation in product dev	elopr	nent		
2.2 Course convenor			Pro	Prof.dr.ing. BUTNARIU Silviu				
2.3 Seminar/ laboratory/ project			Pro	Prof.dr.ing. BUTNARIU Silviu				
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	С	2.7 Course	Content ³⁾	DS
						status	Attendance type ⁴⁾	DI

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week		out of which: 3.2 led	cture	1	3.3 seminar/ laboratory/ project	0/0/1
3.4 Total number of hours in	28	out of which: 3.5 le	cture	14	3.6 seminar/ laboratory/ project	0/0/14
the curriculum						
Time allocation						hours
Study of textbooks, course support, bibliography and notes						22
Additional documentation in libraries, specialized electronic platforms, and field research					18	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					28	
Tutorial					2	
Examinations					2	
Other activities						
3.7 Total number of hours of student activity 72						

3.8 Total number per semester	100
3.9 Number of credits ⁵⁾	4

4. Prerequisites (if applicable)

4.1 curriculum-	Engineering disciplines studied in the undergraduate years
related	
4.2 competences-	Basic engineering concepts
related	

5. Conditions (if applicable)

5.1 for course development	classroom, projector
5.2 for seminar/ laboratory/	computer room.
project development	
	C.1 Skills for identifying needs for design
------	--
	L.O.1.1 To identify customer needs;
	L.O.1.2 To interpret the technical requirements of customers, analyzing, understanding and applying the
	information provided regarding the technical conditions;
	L.O.1.3 To define technical design requirements,
	C.6 Skills to use CAD-CAM-CAE systems
	L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
	analysis and optimization of an industrial drawing or model;
	L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.
	C.7 Competences for the development of vehicle manufacturing and assembly technologies, test and
	validation procedures for vehicle components, systems and equipment
	L.O. 7.2 evaluation of advanced vehicle manufacturing technologies and their correlation with the optimal
es	operating parameters of vehicle systems;
enc	L.O.7.6 development of test and validation protocols to enable a variety of analyzes of vehicle
pet	components and systems;
сот	L.O.7.8 identifying problems that may arise and finding optimal solutions;
nal	R.Î.7.10 evaluating the possibility that a system or its components can be obtained by applying certain
ssio	engineering principles.
ofe	C.8 The ability to improve safety and comply with technical equipment safety standards
Ъ.	L.O.8.2 combine mechanical, electrical, electronic, software and safety engineering for vehicle design.
	CT.1 Competences for integration into specific activities at the workplace and technical competences, in
	conditions of autonomy and professional independence
	L.O.1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
	L.O.1.6 to be able to work in a team but also independently, developing their own ways of doing things,
	showing the desire to learn,
	L.O.1.7 to analyze new problems, based on creative, innovative, analytical, holistic thinking;
ស្ត	L.O. 1.9 apply scientific, technological and engineering knowledge, processing complex information,
ence	operating technological installations, tools or digital equipment;
pete	L.O.1.13 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
ШO	CT.2 Communication and teamwork skills
salo	L.O.2.2 to address an audience, give a speech, make a presentation;
vers	L.0.2.3 to moderate discussions between two or more people, including in situations such as workshops,
ans	conferences or online events;
цТ	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	Theoretical and applied training in the design and development of products in the field of motor				
objective	vehicles				
7.2 Specific	Understanding product development strategies				
objectives	 Understanding of product design methods and processes 				
	 Understanding and practicing simulation in product development 				

8. Content

8.1 Course	Teaching methods	Number	Remarks
		of hours	
Trends in the automotive industry. Life cycle assessment	Interactive course,	2	
Product development in the automotive industry. Introduction	exposure to	2	

(background, methods, history)	multimedia				
Life cycle of automotive products		2			
Product development process models. Simulation in product		4			
development					
Project management in product development		2			
How product development simulation adds value to the product		2			
development process					
Bibliography					
Rafinjad, D. R. Innovation, product development and Commercializat	<i>tion</i> , 2007				
Munch, J., a o , <i>Software process definition and Management,</i> Spring	jer, 2012				
Karniel, A., Reich Y., Managing the Dynamics of the New Product Dev	<i>velopment Process</i> , Spri	nger, 2011.			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number	Remarks		
	methods	of hours			
Product development processes for	Individual and group	6			
public transport systems: case studies of electromobility systems;	work, assisted				
infrastructure; monitoring; efficiency; innovation process, research	training				
activities.					
Product Development Simulation Case Studies: Global Customer	Individual and group	8			
Demands: Model Supported Design vs Traditional Design; model	work, assisted				
validation; virtual model verification, applications on automotive	training				
engine subassemblies					
Bibliography					
Rafinjad, D. R. Innovation, product development and Commercialization, 2007					
Munch, J., a o , Software process definition and Management, Springer, 2012					
Karniel, A., Reich Y., Managing the Dynamics of the New Product De	<i>velopment Process</i> , Spri	nger, 2011.			

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of the discipline was discussed with the professors of the department and with the representatives of the Schaeffler Romania company

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage				
			of the final grade				
10.4 Course	Ability to identify, formulate and solve	Knowledge verification to support	50				
	engineering problems	the project					
10.5 Seminar/	Correctness of schemes and calculations	Project analysis	30				
laboratory/ and conclusions							
project The originality of the presentation.		Powerpoint presentation	20				
10.6 Minimal performance standard							
Grade 5 on the project							
Score 5 on the knowledge test							

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA	Prof.dr.ing. Mihai DUGULEANĂ		
Dean of Faculty of Mechanical Engineering	Head of Department		
J. Rosca	'the		
Prof.dr.ing. Silviu BUTNARIU	dr.ing. Eugen BUTILĂ		
Course holder	Holder of laboratory/ project		

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Fini	te element analysis in	auto	motive design (Fl	EA)	
2.2 Course convenor			Pro	Prof.dr.ing. BUTNARIU Silviu				
2.3 Seminar/ laboratory/ project			dr.ir	ng. BUTILĂ Eugen				
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	DAP
						status	Attendance type ⁴⁾	DI

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week 4		out of which: 3.2 lec	ture	2	3.3 seminar/ laboratory/ project	0/1/1
3.4 Total number of hours in	56	out of which: 3.5 lec	ture	28	3.6 seminar/ laboratory/ project	0/14/1
the curriculum						4
Time allocation						hours
Study of textbooks, course support, bibliography and notes 30					30	
Additional documentation in libraries, specialized electronic platforms, and field research 2					25	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays 2					28	
Tutorial 8					8	
Examinations 3					3	
Other activities						
3.7 Total number of hours of stu	ident a	ctivity 94				

3.8 Total number per semester	150
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-	• General concepts of physics, mechanics, strength of materials. Mathematical disciplines and
related	engineering disciplines (machine parts, material resistance, mechanics, mechanisms), studied
	in the undergraduate years
4.2 competences-	Knowledge and understanding:
related	• familiarize students with the concepts and terminology of the discipline, with reference to
	mechanical systems and processes in the field of automotive engineering study.
	 understanding the reasoning used and how the investigation;
	understanding criteria for choice and use of methods of investigation.
	Explanation and interpretation:
	• explain the concepts used in finite element analysis and interpretation of analysis results of
	tension and strain generated in different application situations;
	Instrumental – Applied

• to selection of the concepts and proper investigation methods, recognizing how best to
resolve the problem subject to study;
• proper use of specific calculation processes theory finite element discretization of a correct
interpretation of results, proper use of the automatic calculation program for.
Attitude
• evidence of positive and responsible attitudes towards science based on knowledge of
phenomena and connections with engineering practice;
• fostering scientific environment centered democratic values and relationships;
 making best use of their potential in creative and scientific activities;
• engaging in a partnership relationship with other people: colleagues, teachers, etc.
participation in their scientific development.

5. Conditions (if applicable)

5.1 for course development	classroom, projector
5.2 for seminar/ laboratory/	 computer room, dedicated software (ANSYS), machine elements.
project development	

6. Specific competences and learning outcomes

	C.2 Competences to design systems, equipment and vehicle components
	L.O.2.3 applying mathematical methods and using calculation and simulation programs to perform technical
	analyzes and design solutions for specific problems;
	L.O.2.5 designing prototypes of vehicle components and systems by applying advanced engineering
	principles;
	L.O.2.6 preparation of functional models, prototypes in order to test concepts and reproduction possibilities;
	creating prototypes for pre-production test evaluation;
	L.O.2.7 development of test protocols for vehicle components and equipment;
	C.4 Competences to carry out scientific research.
	L.O 4.3 To prepare reports that describe the results and processes of scientific or technical research or
	evaluate its progress.
	L.O.4.4 To prepare research documents or give presentations to report the results of an ongoing research
	project, indicating the analysis procedures and methods that led to the respective results, as well as
es	possible interpretations of the results;
Genc	L.O.4.9 To synthesize information, critically interpret and summarize new and complex information from
npet	various sources;
соп	
nal	C.6 Skills to use CAD-CAM-CAE systems
ssio	L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
ofe	analysis and optimization of an industrial drawing or model;
Ъ	L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.

	CT.1 Competences for integration into specific activities at the workplace and technical competences, in
	conditions of autonomy and professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O.1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
ş	decisions choosing from several alternative possibilities;
ence	L.O.1.13 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
pete	
шо	CT.2 Communication and teamwork skills
al C	L.O.2.2 to address an audience, give a speech, make a presentation;
vers	L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
ansı	conferences or online events;
Ĕ	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	The study of the Finite Element Method discipline has as its general objective the acquisition of						
objective	knowledge and the acquisition of the skills necessary for professional development in the						
	environment of industrial codes and, in particular, to form the skills necessary for the design and						
	computer-assisted manufacturing activities of specific engineering milestones						
7.2 Specific	In this course, the fundamental aspects of the finite element method are first presented, then						
objectives	the student becomes familiar with the use of basic tools for finite element modelling and						
	analysis, applied in the real situation of some engineering problems. The educational purpose of						
	the course aims at the following objectives:						
	Knowledge and appropriate use of the concepts with which the discipline operates:						
	finite element, model with finite elements, elementary stiffness matrix, global						
	stiffness matrix, boundary conditions, processing, post-processing, etc.;						
	• Understanding the principles of modelling resistance structures and their elements,						
	as well as developing the skills of correct application of this knowledge;						
	Carrying out pertinent analyses regarding the schematization level accepted when						
	developing a model with finite elements in structural mechanics problems;						
	The correct interpretation of the results and the formulation of conclusions based						
	on the results obtained following the analysis on models with finite elements;						

8. Content

<u> </u>		Taa shin a masthada	Numero	Damaarika
8.	l Course	leaching methods	Number	Remarks
			of hours	
1.	The finite element method: The principle of the finite element	Interactive course,	4	
	method, the steps to solve a problem using the finite element	exposure to		
	method, shape functions, general considerations on the choice	multimedia, heuristic		
	of elemental elements, meshing domain analysis for	conversation,		
	continuous structures, obtaining finite element numerical	explanation,		
	model.	demonstration		
2.	One-dimensional problems		2	
3.	Multidimensional problems		2	
4.	Calculation methods of engineering structures. Using finite		2	
	element method in engineering. Physical and Engineering			
	Opportunities limits.			
5.	Basis of the theory of elasticity: tension, displacement fields		4	

	and strain states;			
6.	Laws of behavior / criteria limits of elasticity: Tresca criterion,		4	
	Von Mises criterion.			
7.	Mechanical Fundamentals of finite element method. Balance		2	
	equations. Laws of behaviour. Approximation by finite			
	elements. The finite element method in elasticity, led by			
	displacement calculation, deformation tensor, vector efforts,			
	the element stiffness matrix.			
8.	Types of finite elements and criteria of their choice. Practical		4	
	problems using the finite element method. Influence of mesh,			
	test case.			
9.	Case study for a bar subjected to bending.		2	
10.	Steps for the finite element analysis and the flowchart for		2	
	solving process. Interpretation of finite element analysis			
	results.			
Bit	pliography			
Bu	itnariu, S., Mogan, Gh., Analiza cu elemente finite în ingineria meca	inicã. Aplicatii practice ir	n ANSYS, Ed	. Universită ii
Tra	ansilvania, ISBN 978-606-19-0474-7 (print), 2014			
8.2	2 Seminar/ laboratory/ project	Teaching-learning	Number	Remarks
		methods	of hours	
1.	Description the possibilities and the performances calculation	Learning through	2	14 case
us	ed programs.	problem /		studies –
2.	Analysed the structure geometry modelling: Defining mesh	explanation,	3	tutorials from
pa	rameters. Choice of finite element. Discretization.	demonstration, case		references
3.	Physical and mechanical modelling: Defining material. Defining	study, conducting	3	
an	d declaring links. Defining external actions - forces and	guided and		
m	oments - and load situations.	independent		
4.	Finite element analysis: static calculation, calculation of dynamic	applications.	3	
5.	Finite element analysis results. Interpretation and exploitation.		1	
6.	Assessment of laboratory activity and project evaluation		2	
7.	Project – finite element analysis of an element / assembly	Solving a case study	14	
Bit	oliography			

Butnariu, S., Mogan, Gh., Analiza cu elemente finite în ingineria mecanicã. Aplicatii practice in ANSYS, Ed. Universității Transilvania, ISBN 978-606-19-0474-7 (print), 2014

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Finite element analysis software applications offer a wide range of solutions in industry, for example in civil construction infrastructure: power plants, bridges, roads, railways, structures, and water systems. Benefits include: greater confidence in the structural integrity of the design when considering multiple innovative construction methods and materials, rapid evaluation of trade studies, configuration changes, concept drawings, side-by-side evaluation of the overall structure, with details key within the structure, as well as the ability to cope with all types of loading environments.

A large proportion of representative employers recognize that modeling and simulation, including finite element analysis (FEA) and computer-aided design (CAD), are valuable tools in vehicle development to optimize design and minimize risk. Using simulation tools including ADAMS, MATLAB, as well as finite element analysis, these companies provide rapid design coupled with corrective action.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage					
			of the final grade					
10.4 Course	Ability to apply knowledge of	Testing theoretical and practical	50					
	mathematics, science and engineering.	knowledge by carrying out a						
	Ability to identify, formulate and solve	complex project - case study						
	engineering problems							
10.5 Seminar/	Ability to complete, follow and complete	Studying and solving laboratory	15					
laboratory/	case studies solvable through MEF based	work						
project	on tutorials.							
	Ability to use modern engineering	Practical test - solving exercises	35					
	techniques, skills and tools required for							
	engineering practices; case study.							
10.6 Minimal perfo	rmance standard							
Minimum requi	rements for grade 5: for all evaluation activit	ies, at least half of the points awarde	d, respectively					
minimum grade 5, must be obtained. The minimum performance standards are given by understanding the								
introductory concepts taught in each topic, making the connection between concepts, the correct approach to the								
applications and calculation dexterity								

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA	Prof.dr.ing. Mihai DUGULEANĂ
Dean of Faculty of Mechanical Engineering	Head of Department
J. Rosca	'tr
Prof.dr.ing. Silviu BUTNARIU	dr.ing. Eugen BUTILĂ
Course holder	Holder of laboratory/ project

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course				Virtual and augmented reality in automotive design and maintenance					
2.2 Course convenor			Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
2.3 Seminar/ laboratory/ project		Pro	Prof. Ph. D. eng. Florin GÎRBACIA						
convenor									
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	PC	
						status	Attendance type ⁴⁾	CPC	

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	out of which: 3.2	lecture	1	3.3 seminar/ laboratory/ project	0/1/1	
3.4 Total number of hours in	42	out of which: 3.5	lecture	14	3.6 seminar/ laboratory/ project	0/14/1
the curriculum						4
Time allocation						
Study of textbooks, course support, bibliography and notes						15
Additional documentation in libraries, specialized electronic platforms, and field research						35
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays						52
Tutorial						2
Examinations						2
Other activities					2	
3.7 Total number of hours of stu	udent a	ctivity 108				
3.8 Total number per semester		150				

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	Knowledge of 3D Modelling, 3D Graphics Programming
4.2 competences-related	Operating with fundamental concepts of engineering sciences.

6

5. Conditions (if applicable)

5.1 for course development	projector
	lecture notes
	recommended bibliography
5.2 for seminar/ laboratory/	projector
project development	laboratory equipped with computers
	virtual and augmented reality equipments
	lecture notes
	recommended bibliography

6. Specific competences and learning outcomes

	Cp1 Competences in the design of systems, equipment and vehicle components
	L.O.1.1 the ability to study, interpret and capitalize on technical resources specific to the motor vehicle
	manufacturing industry;
	L.O.1.2 the use of advanced concepts, techniques and principles regarding the design of modern systems
	and equipment intended for motor venicles;
	L.U.1.3 applying mathematical methods and using calculation and simulation programs to perform
	technical analyzes and design solutions for specific problems;
	L.O. 1.4 designing prototypes of venicle components and systems by applying advanced engineering
	principies;
	Cp2. Competences to carry out scientific research.
	L.O.2. I To carry out scientific research, to conceive or create new knowledge by formulating questions in
	the field by researching, improving or developing concepts, theories, models, techniques, tools, software or
	operational methods and by using methods and techniques scientific;
	L.O.Z.Z TO gather information about current trends and styles regarding vehicles and the need for new
	products of services;
	c.o.2.5 To prepare reports that describe the researchers keep up with recent discoveries:
	1.0.2 (To propose resource documents or give presentations to report the results of an opgoing resource
	project indicating the analysis procedures and methods that led to the respective results of all oligoing research
	project, indicating the analysis procedures and methods that led to the respective results, as well as
	1.0.25 To carry out research on the present and future developments and currents in design, as well as on
	the related target characteristics of the market.
	1.026 To manage research data:
	1027 To operate scientific research and laboratory equipment:
	L 0.2.8 To synthesize information, critically interpret and summarize new and complex information from
	various sources:
	L.0.2.9 To interact professionally in research and professional environments:
	L.0.2.10 To apply systematic research methods and to communicate with the relevant parties to find
	specific information, evaluating the research results in view of the relevant estimation of the information.
	as well as the related technical systems and their evolutions:
	L.O.2.11 To provide proof of in-depth knowledge and complex understanding of the research field.
	including responsible research, ethical principles and scientific integrity in research matters, respect for
	private life and RGPD requirements, related to research activities in - a certain discipline.
	Cp3. Software design and development capability
	L.O.3.1 to develop software for motor vehicles and related systems;
	L.O.3.2 understand and apply the principles of programming and software development technologies in the
	automotive industry;
	L.O.3.3 to evaluate and choose suitable platforms, programming languages and software technologies for
S	projects in the automotive industry;
ence	L.O.3.4 to develop software applications to improve the functionality, performance and safety of motor
pet	vehicles;
lmo	L.O.3.5 to test and debug software to ensure the proper and safe operation of vehicle systems;
al c	Cp4. Skills in using CAD-CAM-CAE systems
sior	L.O.4.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
ofes	analysis and optimization of an industrial drawing or model;
Prc	

	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
	L.O.1.3 to show initiative, to be proactive,
	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
	operating technological installations, tools or digital equipment;
	L.O.1.5 identify problems and make decisions to solve them;
	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
	them in his day-to-day activity;
	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
	Ct2. Communication and teamwork skills
	L.O.2.1 to carry out their work in a team;
	L.O. 2.2 to address an audience, give a speech, make a presentation;
	L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
	conferences or online events;
S	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
ence	L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
pete	compromise solutions, resolving conflicts;
mo	L.O.2.6 to be able to lead others, coordinate a team;
sal c	L.O.2.7 be able to train other team members and organize information, objects and resources;
vers	L.O.2.8 to motivate others, stimulating action;
ans	L.O.2.9 to develop teams, managing time and delegating responsibilities;
Tr	L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• Understanding the principles and potential for automotive design of Virtual
	Reality (VR) and Augmented Reality (AR) techniques and technologies.
	• Understand and gain basic knowledge required to develop applications for
	3D simulation of automotive based on VR technology.
7.2 Specific objectives	Learning of knowledge for creating interactive 3D virtual environments
	required in automotive design;
	 Learning knowledge for development of RV / RA software;
	• Acquisition of practical skills for automotive design applications through the
	use of RV / RA technologies and programming environments.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Introduction. The aim of the course. Introduction to	Interactive lecture	2 hours	
human-computer interaction. Terminology,			
definitions and characteristics of virtual reality.			
Terminology, definitions and characteristics of			
augmented reality. Available technologies for			
virtual reality and augmented. History of virtual and			
augmented reality.			
Software systems and standards for virtual and	Interactive lecture	2 hours	

augmented reality: Unity, InstantReality, ARCore			
Virtual and augmented reality hardware:	Interactive lecture	2 hours	
technology and stereoscopic 3D visualization			
systems, haptic and audio systems			
Virtual and augmented reality hardware: 3D input	Interactive lecture	2 hours	
devices for virtual reality: tracking systems, voice			
commands, gloves, brain-computer interfaces.			
3D interaction techniques for virtual and	Interactive lecture	2 hours	
augmented reality.			
Designing RV/RA user interfaces and applications	Interactive lecture	4 hours	

Bibliography

- 1. Gîrbacia Florin, Duguleană Mihai (2019): Virtual and augmented reality in automotive design and maintenance: course notes, Editura Universitatii Transilvania din Brasov, ISBN 978-606-19-1124-0.
- 2. Gîrbacia F. (2016): Tehnologii de Realitate Virtuală și Augmentată Aplicate în Inginerie. Note de curs", Editura Universitatii Tranilvania din Brasov, ISBN 978-606-19-0784-7.
- 3. Talabă, D., Amditis, A. Product Engineering, Tools and Methods Based on Virtual Reality. Editura Springer, 2007.
- 4. Gîrbacia, F. Talabă, D., Tehnologiile realității virtuale:lucrări practice, Editura Universității Transilvania Braşov, 2012.
- 5. Girbacia, F. Cercetari teoretice si experimentale privind dezvoltarea de interfete multimodale de realitate virtuala pentru aplicatii de proiectare asistata de calculator, Teza de doctorat, Universitatea Transilvania Brasov, 2007.
- 6. Vince J., Realitate Virtuala, Editura Tehnica, Bucuresti, 2000.
- 7. Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, Ivan Poupyrev, "3D User Interfaces: Theory and Practice", Addison-Wesley/Pearson Education, 2005,ISBN 0-201-75867-9.
- 8. Burdea, G. Virtual Reality Technology, Ed. John Wiley&Sons, 2003.

Thalman, D. Stepping into Virtual Reality, Ed. Springer, 2008.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Geometric modeling of 3D virtual environments for	Interactive lecture,	2 hours	
automotive design applications.	exercises and examples,		
	individual work		
Techniques and principles for developing virtual	Interactive lecture,	4 hours	
reality applications using Unity	exercises and examples,		
	individual work		
Techniques and principles for developing	Interactive lecture,	4 hours	
applications using the, Unity, Instant Reality and	exercises and examples,		
ArCore SDK Augmented Reality libraries	individual work		
Development of 3D stereoscopic passive / active	Interactive lecture,	4 hours	
visualization automotive design applications.	exercises and examples,		
	individual work		
Navigation and interaction in virtual three-	Interactive lecture,	2 hours	
dimensional VRML scenes using 3D mouse and	exercises and examples,		
joystick	individual work		
Designing a with 1 DOF haptic device for an	Individual work	6 hours	
automotive part design haptic prototyping			
Development of a Augmented Reality Application	Individual work	6 hours	

for auto	omotive maintenance interactive					
instruct	tions					
Bibliogr	raphy					
1.	Gîrbacia, F. Computer Aided Design and Grap	hics Programming. Editura U	niversită ii Transilvan	ia, Braşov,		
	2016.					
2.	2. Gîrbacia Florin, Duguleană Mihai (2019): Virtual and augmented reality in automotive design and maintenance:			d maintenance:		
	course notes, Editura Universitatii Transilvania din Brasov, ISBN 978-606-19-1124-0.					
3.	. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universit ii Transilvania Brașov, 2012.					
4.	Gîrbacia F. (2016): Tehnologii de Realitate Virtuală și Augmentată Aplicate în Inginerie. Note de curs", Editura					
	Universitatii Tranilvania din Brasov, ISBN 97	8-606-19-0784-7.				

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Cunoștin ele teoretice și practice fundamentează cele mai noi abordări ale tehnologiilor de Realitate Virtuală și Augmentată pentru domeniul proiectării autovehiculelor. Programa analitică este în concordan ă cu domeniile similare abordate la universități din țară și din străinătate.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage				
			of the final grade				
10.4 Course	Ability to configure virtual	Written exam	40%				
	reality systems for						
	engineering						
10.5 Seminar/ laboratory/	Ability to use modern virtual	Solving practical applications	60%				
project	reality techniques and						
	technologies						
10.6 Minimal performance standa	10.6 Minimal performance standard						
Knowledge of the fundamentals of VR/RA technologies							
 Development of an RV/RA application for automotive engineering 							
• The grades obtained for the pr	oject and exam activity must be	at least 5					

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
J. Roscan Dean	HO .
	Head of Department

Course holder

Prof. Ph. D. eng. Florin GÎRBACIA, GUN

Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level – choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course				ctice for research and	devel	opment l		
2.2 Course convenor								
2.3 Seminar/ laboratory/ project		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	С	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week 12 out of which		out of which: 3.2 lect	ch: 3.2 lecture 0 3		3.3 seminar/ laboratory/ project	0/0/12
3.4 Total number of hours in	168	out of which: 3.5 lect	ure	0	3.6 seminar/ laboratory/ project	168
the curriculum						
Time allocation						hours
Study of textbooks, course support, bibliography and notes						20
Additional documentation in libraries, specialized electronic platforms, and field research						20
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays						16
Tutorial						0
Examinations						4
Other activities						20
3.7 Total number of hours of student activity 60						
3.8 Total number per semester		228				

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	٠	Elementary concepts of automotive engineering, computer-aided design
4.2 competences-related	٠	Operating with fundamental concepts of engineering sciences.

4

5. Conditions (if applicable)

5.1 for course development	• projector
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers
	• Windows operating system, Unity 3D, Ansys

6. Specific competences and learning outcomes

	C1. Skills for identifying needs for design
	L.O.1.1 To identify customer needs, using appropriate questions and active listening to identify customer
	expectations, wishes and requirements according to products and services;
	L.O.1.2 To interpret the technical requirements of customers, analyzing, understanding and applying the
	information provided regarding the technical conditions;
	L.O.1.3 To define technical design requirements, by specifying the technical properties of the goods,
	materials methods processes services systems software and functionalities by identifying and
	addressing the specific needs that must be met according to the client's requirements:
	101/1 To ensure the connection with the engineers from the other departments to ensure a common
	understanding and to discuss the design, development and improvement of the products.
	L 0.1.5 To make design skotches to contribute to the development and improvement of the products,
	Concepts.
	$L \cap (A, T = manage research data)$
	L.O.4.7 To manage research and laboratory equipment.
	L.O.4.8 To operate scientific research and laboratory equipment;
	L.O.4.9 To synchesize information, critically interpret and summarize new and complex information from
	various sources;
	L.O.4. TO TO Interact professionally in research and professional environments;
	C.6 Skills to use CAD-CAM-CAE systems
	L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
	analysis and optimization of an industrial drawing or model;
	L.0.6.2 the use of computer-aided manufacturing (LAM) programs to control machines and machine
	tools in the creation, modification, analysis or optimization processes as part of the manufacturing
	processes of motor vehicle parts;
	L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering
ces	projects.
ten	C.8 The ability to improve safety and comply with technical equipment safety standards
adu	L.O.8.1 inspect equipment used during industrial activities, such as manufacturing or construction
COL	equipment, to ensure that the equipment complies with safety and environmental legislation.
onal	L.O.8.2 combine mechanical, electrical, electronic, software, and safety engineering to design motor
SSic	vehicles such as trucks, vans, and automobiles.
ofe	L.O.8.3 to apply the basic security standards and technical standards specific to equipment to prevent
Ч	risks related to the use of technical equipment at work.
	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
ស្ត	L.O.1.3 to show initiative, to be proactive,
ence	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
oete	operating technological installations, tools or digital equipment;
jmo	L.O.1.5 identify problems and make decisions to solve them;
alc	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
/ers	them in his day-to-day activity;
unsv	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
Та	

Ct2. Communication and teamwork skills
L.O.2.1 to carry out their work in a team;
L.O. 2.2 to address an audience, give a speech, make a presentation;
L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
conferences or online events;
L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
compromise solutions, resolving conflicts;
L.O.2.6 to be able to lead others, coordinate a team;
L.O.2.7 be able to train other team members and organize information, objects and resources;
L.O.2.8 to motivate others, stimulating action;
L.O.2.9 to develop teams, managing time and delegating responsibilities;
L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Apply scientific knowledge to solve automotive engineering problems.
7.2 Specific objectives	 Practical skills for operating and use the RV hard-software systems. Practical skills for simulating the development processes of automotive products. Practical skills of advanced simulation in the design of vehicles Theoretical and applied knowledge related to the modeling and simulation of the physical processes Development of modern software, innovative methods, principles and simulation procedures Development of methods for evaluating research and development projects Development of methods for evaluating modern principles and methods

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Not the case			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Development of a passive / active 3D stereoscopic	Video projector		
visualization application related to automotive	presentations, examples,		
design	experiments, case studies		
Developed RV / RA application for maintenance of	related to multibody		
autovehicles	systems, programming in	168	
Performing a finite element analysis in Ansys of a	specific CAD languages,		
vehicle component	3D graphic programming		
Group projects			

Bibliography

- Gîrbacia Florin "Tehnologii de realitate virtuală pentru proiectarea asistată de calculator", Editura Universitatii Transilvania, 2019. ISBN 978-606-19-1123-3
- 2. Gîrbacia Florin, Duguleană Mihai "Virtual and augmented reality in automotive design and maintenance: course notes", Editura Universitatii Transilvania din Brasov, 2019. ISBN 978-606-19-1124-0
- 3. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.

- 4. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universit ii Transilvania Brașov, 2012.
- 5. Gîrbacia F. (2016): Tehnologii de Realitate Virtuală și Augmentată Aplicate în Inginerie. Note de curs", Editura Universitatii Tranilvania din Brasov, ISBN 978-606-19-0784-7.
- 6. Butnariu, S., Mogan, Gh., Analiza cu elemente finite în ingineria mecanică. Aplicatii practice in ANSYS, Ed. Universită ii Transilvania, ISBN 978-606-19-0474-7 (print), 2014

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Through its content and through the elaboration of the thematic portfolio (the study), the masters acquire competences in accordance with the expectations of the epistemic community and of the producers in the car market. The analytical program is in line with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage				
			of the final grade				
10.4 Course							
10.5 Seminar/ laboratory/	RV application development	Oral presentation	100%				
project	FEM simulation completion						
	Involvement in practical						
	activities						
	Efficiency in verbal						
	communication						
	(presentation)						
10.6 Minimal performance standa	rd						
Knowledge of CAD fundar	Knowledge of CAD fundamentals						
Realization of an MBD simulation for engineering applications							
Realization of practical project							
• The marks for project work must be at least 5.							

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
J. Roscan Dean	HO
	Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Ghuy	Gfug
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: **FC** (fundamental course) / **DC** (course in the study domain)/ **SC** (speciality course)/ **CC** (complementary course); for the Master level, select one of the following options: **PC** (proficiency course)/ SC (synthesis course)/ **AC** (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

A. COURSE OUTLINE

1. Program data

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Motor vehicles and transport
1.4 Master's field of study ¹⁾	Automotive Engineering
1.5 Cycle of studies ²⁾	Masters
B. 1.6 Curriculum/Qualification	Virtual Engineering in Automotive Design / Master's Degree

2. Discipline data

2.1 Name of the disc	ipline	Advanced me	Advanced mechanical transmissions in automotive engineering						
2.2 Course Activity Holder Conf.dr.ing. Dragoș Sorin Dima									
2.3 Owner of project activities Conf dr.ing. Dragoș Sorin Dima									
2.4 Year of study	1	2.5 Semester	2	2.6 Type of C 2.7 Content3) [DAP
				assessment			Discipline	Obligation4 ⁾	DO
							regime		

3. Total estimated time (hours per semester of teaching activities)

3

3.1 Number of hours per week	2	of which: 3.2	1	3.3 Seminar/ Laboratory/	0/0/1
		course		Project	
3.4 Total hours of the curriculum	28	of which: 3.5	14	3.6 Seminar/ Laboratory/	0/0/14
		course		Project	
Time Pool Distribution					hours
Study by textbook, course material, bibliography and notes					
Additional documentation in the library, on specialized electronic platforms and in the field					
Preparation of seminars/laboratories/projects, assignments, papers, portfolios and essays					
Tutoriat					
Examination					
Other activities					
3.7 Total hours of student activity	47				
3.8 Total hours per semester	75				

4. Preconditions (where applicable)

3.9 Number of credits5)

4.1 curriculum -	General concepts of physics, mechanics, strength of materials. Mathematical disciplines and	
related	engineering disciplines (machine parts, material resistance, mechanics, mechanisms), studied	
	in the undergraduate years	
4.2 Competences	Knowledge and understanding:	
	familiarize students with the concepts and terminology of the discipline, with	
	reference to mechanical systems and processes in the field of automotive engineering	
	study.	
	understanding the reasoning used and how the investigation;	
	understanding criteria for choice and use of methods of investigation.	
	Explanation and interpretation:	
	explain the concepts used in finite element analysis and interpretation of analysis	
	results of tension and strain generated in different application situations;	

Instrumental – Applied		
to selection of the concepts and proper investigation methods, recognizing how best		
to resolve the problem subject to study;		
proper use of specific calculation processes theory finite element discretization of a		
correct interpretation of results, proper use of the automatic calculation program for.		
Attitude		
evidence of positive and responsible attitudes towards science based on knowledge of		
phenomena and connections with engineering practice;		
 fostering scientific environment centered democratic values and relationships; 		
 making best use of their potential in creative and scientific activities; 		
engaging in a partnership relationship with other people: colleagues, teachers, etc.		
participation in their scientific development.		

5. Conditions (where applicable)

5.1 for course development	classroom, projector
5.2 for seminar/ laboratory/	computer room, dedicated software (ANSYS), machine elements.
project	

6. Specific competences and learning outcomes

CP2. Skills	in the design of systems, equipment and components of motor vehicles
L.O.2.1	the ability to study, interpret and capitalize on the technical resources specific to the automotive
	manufacturing industry;
L.0.2.2	the use of advanced concepts, techniques and principles for the design of modern automotive
	systems and equipment;
L.O.2.3	the application of mathematical methods and the use of calculation and simulation programs to
	perform technical analyses and design solutions for specific problems;
L.O.2.5	Prototype design of automotive components and systems by applying advanced engineering
	principles;
CP4 Comp	etences to carry out scientific research
L.O.4.1	To conduct scientific research, to conceive or create new knowledge by formulating questions in
	the field by researching, improving or developing concepts, theories, models, techniques, tools,
	software or operational methods and by using scientific methods and techniques;
L.O.4.2	Gather information about current vehicle trends and styles and the need for new products or
	services;
L.O.4.3	Prepare reports describing the results and processes of scientific or technical research or
	assessing its progress. These reports help researchers keep up with recent findings;
L.O.4.4	Develop research papers or give presentations to report the results of a research project,
	indicating the analysis procedures and methods that led to those results, as well as possible
	interpretations of the results;
L.O.4.5	Conduct research on present and future developments and trends in design, as well as related
	target market characteristics;
L.O.4.6	Anticipate changes in automotive technology, supervise and investigate recent technological
	trends and developments;
L.O.4.7	Manage research data;

	L.O.4.9 Synthesize information, interpret and critically summarize new and complex information from
	various sources;
a	L.O.4.10 Interact professionally in research and professional environments;
o th	L.O.4.11 Apply systematic research methods and communicate with relevant parties to find specific
וקר זוגר	information, evaluating research results with a view to relevant estimation of the information, as
rdii	well as related technical systems and their developments;
acco	L.O.4.12 Demonstrate in-depth knowledge and complex understanding of the field of research, including
e) pa	responsible research, ethical principles and scientific integrity in research, respect for privacy and
m) m	GDPR requirements, related to research activities in a particular discipline.
	CP.6 Competences for the use of CAD-CAM-CAE systems
accu	L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
es a	analysis and optimisation of an industrial design;
enc of th	CP.7 Competences for the development of motor vehicle manufacturing and assembly technologies,
id c	test and validation procedures for motor vehicle components, systems and equipment
con e gi	L.O.7.2 Evaluation of advanced technologies for the manufacture of motor vehicles and their correlation
ific	with the optimal operating parameters of motor vehicle systems;
pec	L.O.7.3 applying and developing specific criteria, procedures and methods for the design of modern
6. S соп	manufacturing, assembly and maintenance technologies for motor vehicles;
	CT.1 Integration skills in specific activities at the workplace and technical skills, in conditions of
	autonomy and professional independence
	L.O.1.1 to take responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O.1.2 to show determination, making sustained efforts for success by pursuing clear objectives, to
	make decisions by choosing from several alternative possibilities;
	L.O.1.3 show initiative, be proactive,
	L.O.1.4 to show self-reflection, quick thinking and to accept criticism and new guidance received from
	colleagues or superiors;
	L.O.1.5 provide advice to co-workers, providing suggestions on the best way forward;
	L.O.1.6 to be able to work in a team but also independently by developing their own ways of doing
	things, showing a willingness to learn,
	L.O.1.7 to analyse new problems that have arisen, based on creative, innovative, analytical, holistic
	thinking;
	L.O.1.8 to ensure customer orientation;
	R.Î.1.9 to apply scientific, technological and engineering knowledge, processing complex information;
S	L.O.1.10 to identify problems and make decisions to solve them;
ence	L.O.1.11 to apply principles, policies and regulations aimed at environmental sustainability, including the
pet	reduction of waste, energy and water consumption, the reuse and recycling of products, as well
ШO	as involvement in the collaborative economy;
sal c	L.O.1.12 to comply with the rules, regulations and guidelines relating to a particular field or sector and to
vers	apply them in its day-to-day work;
ans	L.O.1.13 plan activities, manage the calendar and resources to complete tasks in a timely manner.
Ц	

CT.2 Comr	nunication and teamwork skills
L.O.2.1	to carry out their work in a team;
R.Î.2.2	to address an audience, to give a speech, to make a presentation;
L.O.2.3	moderate discussions between two or more people, including in situations such as workshops,
	conferences or online events;
L.O.2.4	use simple digital tools and technologies to communicate, interact and collaborate with others.
L.O.2.5	to negotiate compromises, showing trust and managing the frustration of team members, to
	find compromise solutions, resolving conflicts;
L.O.2.6	to be able to lead others, to coordinate a team;
L.O.2.7	be able to train other team members and organize information, objects and resources;
L.O.2.8	to motivate others, stimulating action;
L.O.2.9 to	develop teams, managing time and delegating responsibilities;

7. Objectives of the discipline (resulting from the specific skills accumulated)

7.1 General objective of the	Theoretical and applicative training in the construction and operation of motor vehicle
discipline	transmissions.
	In-depth theoretical and applied training in the design and development of automotive
	transmissions.
	Theoretical and applicative training in understanding the physical processes of
	mechanical transmissions controlled by mechatronic systems.
7.2 Specific objectives	Introduction of master's students to the fundamental concepts of modern
	transmissions for motor vehicles. Understanding the structures and
	functionalities of automatic transmissions.
	Understanding the methods and algorithms of designing automatic transmissions.
	Theoretical and applied knowledge related to all stages of product development
	(conception, design, manufacture, operation). Practical skills in approaching
	automotive product development processes.
	Development of automatic transmission design skills.
	Improve your CAD modeling and calculation skills with software packages.
	Practical skills for studying the behavior of mechanical systems controlled by
	mechatronic devices.

8. Content

8.1 Course	Teaching	Number	Observations
	methods	of hours	
Motor vehicle transmissions (operating principles, terminology,	Lecture,	2	
classification, development trends).	discussions		
Kinematics and dynamics of planetary mechanisms.		2	
Automatic planetary transmissions.		2	
Mechanical friction transmissions with continuously variable gear ratio		2	
(CVT).			
Hydromechanical transmissions (with hydrodynamic and hydrostatic		2	
variators).			
Controlled torque distribution systems. All-wheel drive.		2	
Hybrid powertrains.		2	
Bibliography	•		-
Preda I. Transmisii mecanice avansate în ingineria automobilului. http://ele	arning.unitbv.ro		

Fischer, R., Küçükay, F., Jürgens, G., Najork, R. and Pollak, B. The Automotive Transmission Book. Powertrain: Springer,

2015.

Γ

2015.			
Naunheimer,H. Bertsche,B. Ryborz,J. Novak,W. Automotive Transmissions - Fundamentals, Selection, Design and			
Application. Ed. Springer, London, 2011.			
Conta C. Marollo I. The Automative Chassis Vol 1. Components Design Ed	e Douy. Lu. Dulle d Springer 2000	I WOI LII-FIEIII	emann, 2009.
Genta G. Morello L. The Automotive Chassis. Vol. 1: Components Design. Ed	1.5pinger, 2009.		
Ebsani M. Gao Y. Gay S. Emadi A. Modern Electric Hybrid Electric and Evol	Coll Vobiclos E	Indomontals	Theory and
Design. CRC Press, 2005.		inuamentais,	rneory, and
Reik,W. Reitz,D. Vornehm,M. World of hybrids. Schaeffler Symposium 2006	5, рр.171-187.		
Husain,I. Electric and Hybrid Vehicles Design Fundamentals. CRC Press, Tav	ylor & Francis Gro	oup, 2005.	
Heisler,H. Advanced Vehicle Technology. Butterworth-Heinemann (Elsevier	r), 2002.		
Reimpell,J. Stoll,H. Betzler,J. The Automotive Chassis: Engineering Principle Heinemann (Elsevier), 2001.	s. SAE Internation	nal; Butterwo	orth-
Lechner,G. Naunheimer,H. Automotive Transmissions – Fundamentals, Sel 1999.	lection, Design ar	nd Application	. Ed. Springer,
Fenton,J. Handbook of automotive powertrains and chassis design. Profess	sional Engineering	g Publishing,	London, 1998.
*** Bosch Automotive Handbook. 11th Edition, Plochingen, Germany, 2022). 		
Macarie, T.N. Vieru, I. Bădărău-Suster, H. Transmisii automate, automatizate 2018.	si continue pent	ru automobile	e. Ed. PIM Iași,
Preda,I. Ciolan,Gh. Diaconescu,E. Cristea,D. Transmisii cu varia ie continuă i	pentru autovehici	ule. Editura U	niversită ii din
Pitești, 2012.			
Năstăsoiu,M. Pădureanu,V. Tractoare. Ed. Univ. Transilvania, 2012.			
Preda,I. Roşca,G.M. Tehnici neconven ionale în propulsia autovehiculelor –	Poten ialul surse	lor regenerat	oile de energie
în Uniunea Europeană și în România. Editura Universită ii din Oradea, 2011.			
Livin ,Gh. Gaiginschi,R. Horga,V. Drosescu,R. Chiriac,G. Albu,M. Ră oi,M. Damian,I. Petrescu,M. Vehicule electrice hibride.			
Editura Venus, Iași, 2006.			
Macarie,T.N. Transmisii continue pentru autovehicule. Ed. Universită ii din Pitești, 1999.			
Tabacu I. Transmisii mecanice pentru autoturisme. Editura Tehnică, București, 1999.			
Ciolan,Gh. Preda,I. Pereș,Gh. Cutii de viteze pentru automobile. Editura Didactică și Pedagogică, București, 1998.			
8.2 Seminar/ laboratory/ project	Teaching-	Number	Observations
	learning	of hours	
	methods		
Calculation of transmission ratios and torque moments for a planetary	Individual and		
transmission with chosen kinematic scheme	group work,		
Presentation of the project requirements; Initial documentation	assisted	2	
Finalization of the topic; Understanding how it works	training	2	
Making the kinematic scheme 2			
Calculation of transmission reports 2			
Calculation of torques and yields 2			
Making the PPT presentation 2			
Presentation and grading of the project		2	
Bibliography			
Dua da la Tuana anciati na anciana ante da inacia este ance bibliche: bate 11-le			

Preda I. Transmisii mecanice avansate în ingineria automobilului. http://elearning.unitbv.ro

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of the discipline was discussed with the professors of the department and with representatives of the company Shaeffler Romania.

10. Assessment

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight of the final grade
10.4 Course		Written knowledge testing	50%
10.5 Seminar/ laboratory/	Correctness of schemes and	Analysis of the presentation	30%
	The originality of the	Powerpoint presentation	20%
	presentation.		
10.6 Minimum performance standard			
Grade 5 for the project			
Grade 5 on the knowledge test			

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Dean, Prof.dr.ing. Ioan Călin ROȘCA J. Roșca	Head of Department , Prof.dr.ing. Mihai DUGULEANA
Course holder,	Project coordinator
Conf.dr.ing. Dragoș Sorin DIMA	Conf.dr.ing. Dragoș Sorin DIMA

Note:

- Field of study choose one of the following variants: Bachelor's/Master's/Doctorate (to be filled in according to the Nomenclature of fields and specializations/university study programs in force);
- The study cycle one of the following variants is chosen: Bachelor's/ Master's/ Doctorate;
- Discipline regime (content) one of the variants is chosen: DF (fundamental discipline)/ DD (discipline in the field)/ DS (specialized discipline)/ DC (complementary discipline) for the bachelor's level; DAP (deepening discipline)/ DSI (synthesis discipline)/ DCA (advanced knowledge discipline) for the master's level;
- Discipline regime (compulsory) one of the variants is chosen: **DI** (compulsory subject)/ **DO** (optional subject)/ **DFac** (optional subject);

One credit is equivalent to 25 hours of study (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotives and Transportation
1.4 Field of study ¹⁾	Master
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotives Design

2. Data about the course

2.1 Name of course			Experimental Systems for testing the Automotives Elements					
2.2 Course convenor			Pro	Prof.dr.ing. Lates Mihai Tiberiu				
2.3 Seminar/ laboratory/ project		Pro	Prof.dr.ing. Lates Mihai Tiberiu					
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	С	2.7 Course	Content ³⁾	AC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of which: 3.2 lecture	e 1		3.3 seminar/ laboratory/ project	1
3.4 Total number of hours in	28	out of which: 3.5 lecture	e 14		3.6 seminar/ laboratory/ project	14
the curriculum						
Time allocation						hours
Study of textbooks, course support, bibliography and notes					44	
Additional documentation in libraries, specialized electronic platforms, and field research					24	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					14	
Tutorial					-	
Examinations					3	
Other activities				-		
3.7 Total number of hours of student activity 82						
3.8 Total number per semester 110						

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	Tribology, Advanced Mechanical Transmissions in Automotives Engineerings.
4.2 competences-related	Theoretical and practical knowledge in the field of tribological and automotives
	mechanical transmissions testing.

4

5. Conditions (if applicable)

5.1 for course development	Classroom with blackboard and video projector
	Recommended references
5.2 for seminar/ laboratory/	Laboratory with test rig
project development	Recommended references

6. Specific competences and learning outcomes

CP.1 Skills for identifying needs for design

Learning outcomes. The graduate of the master's study program is able to:

R.Î.1.1 To identify customer needs, using appropriate questions and active listening to identify customer expectations, wishes and requirements according to products and services;

R.Î.1.2 To interpret the technical requirements of the clients, analyzing, understanding and applying the information provided regarding the technical conditions;

CP.3 Competencies for performing practical tests and determinations

Learning outcomes. The graduate of the master's study program is able to:

R.Î.3.1 To perform experimental, environmental and operational tests on models, prototypes or on systems and equipment to test their resistance and capabilities in normal and extreme conditions;

R.Î.3.2 Interpret and analyze data collected during testing to formulate conclusions, new insights or solutions.

R.Î.3.3 To record data that has been specifically identified during previous trials, to verify that trial results produce specific results;

R.Î.3.4 To collect data and statistics for testing and evaluation in order to generate statements and predictions of patterns, with the aim of discovering useful information in the decision process;

R.Î.3.5 To simulate and test mechatronic units using appropriate equipment;

R.Î.3.6 To compare the performance of alternative vehicles based on selected factors;

R.Î.3.7 To evaluate the ecological footprint of vehicles and to use several methods of analyzing greenhouse gas emissions;

R.Î.3.8 To test mechatronic units using appropriate equipment, collecting and analyzing data. To monitor and evaluate the performance of the system and take measures, if necessary.

CP.4 Competences to carry out scientific research.

Learning outcomes. The graduate of the master's study program is able to:

R.Î.4.1 To carry out scientific research, to conceive or create new knowledge by formulating questions in the field by researching, improving or developing concepts, theories, models, techniques, tools, software or operational methods and by using scientific methods and techniques;

R.Î.4.2 To gather information about current vehicle trends and styles and the need for new products or services;

R.Î.4.3 To prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers keep up with recent discoveries;

R.Î.4.4 To prepare research documents or give presentations to report the results of an ongoing research project, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results;

R.Î.4.5 To carry out research on the present and future developments and currents in design, as well as on the related target characteristics of the market;

R.Î.4.6 Anticipate changes in automotive technology, monitor and investigate recent technological trends and developments;

R.Î.4.7 To manage research data;

R.Î.4.8 To operate scientific research and laboratory equipment;

R.Î.4.9 Synthesize information, critically interpret and summarize new and complex information from various sources;

R.Î.4.10 To interact professionally in research and professional environments;

F03.2-Pg7.2-94.11 Apply systematic research methods and communicate with relevant parties to find information

specifice, evaluând rezultatele cercetarilor în vedeea estimarii relevante a informatiilor, precum si a sistemedor tehnice conexe si a evolutiilor acestora;

R.Î.4.12 Să dea dovada de cunoastere aprofundata si întelegere complexa a domeniului de cercetare, inclusiv a

	CT.1 Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	Learning outcomes. The graduate of the master's study program is able to:
	R.Î.1.1 to take responsibility, to accept responsibility for one's own decisions, showing willingness to work,
	respecting one's commitments;
	R.Î.1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
es	R.Î.1.3 to show initiative, to be proactive.
tenc	CT.2 Communication and teamwork skills
npet	Learning outcomes. The graduate of the master's study program is able to:
con	R.Î.2.1 to carry out their work in a team;
ersa	R.Î.2.2 to address an audience, give a speech, make a presentation;
ansv	R.Î.2.3 to moderate discussions between two or more people, including in situations such as workshops,
Tra	conferences or online events.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Theoretical and applied training in experimental tests and associated
	mechanical and mechatronic systems.
7.2 Specific objectives	Theoretical and applied training on the structure, programming and
	operation of test stands.
	Training in the development of experiments.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Test planning. The parameters. Control. Values.	Lecture based on video	1 hour	
Precision. Equipment. Saving data.	projector		
 Analysis of experimental data. Errors. Uncertainty analysis. Statistical analysis. Graphic formats. 	Lecture based on video projector	1hour	
3. Measurement of forces. Forces. Moments. Tensions and efforts.	Lecture based on video projector	2 hours	
4. Measurement of displacements. Travels. Speeds. Vibrations.	Lecture based on video projector	2 hours	
5. Definition of tests. Testing of mechanical transmissions (gears, chain drives, belt drives). Bearing testing. Tribological testing.	Lecture based on video projector	7 hours	
6. Acquisition of data. Drafting the report and presentation.	Lecture based on video projector	1 hour	
Bibliography			
1 I D Holman Experimental methods for engi	neers Roston McGraw-Hill	Jublishing House 200	11

J. P. Holman. Experimental methods for engineers. Boston, McGraw-Hill Publishing House, 2001. Т.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		

1. Run-in tests	Practical tests	2 hours
2. Chain/skid friction testing	Practical tests	2 hours
3. Testing chain drives	Practical tests	2 hours
4. Bearing testing	Practical tests	2 hours
5. Testing of bearing assemblies	Practical tests	2 hours
6. Chain/skid wear testing (oscillating motion)	Practical tests	2 hours
7. Chain/skid Stribeck curve testing	Practical tests	2 hours
Bibliography		

1. J. P. Holman. Experimental methods for engineers. Boston, McGraw-Hill Publishing House, 2001.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical knowledge underpins the latest approaches in the field of experimental systems in automotive mechanics, and practical examples are based on mechanical engineering problems.

The analytical program is in line with the new requirements of the companies producing automotive components (eg Schaeffler Group).

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage	
			of the final grade	
10.4 Course	Correct use of specific testing	Written exam	50%	
	principles and selection of			
	appropriate test solutions for			
	given problems			
10.5 Seminar/ laboratory/	Correct use of test stands for	Oral exam	50%	
project	given problems			
10.6 Minimal performance standard				
Correct use of testing principles for given problems				

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof. dr. eng. Ioan Călin ROSCA	Prof. dr. eng. Mihai DUGULEANA
J. Roscan Dean	\mathcal{A}
	Head of Department
Prof.dr.ing. Mihai Tiberiu LATES	Prof.dr.ing. Mihai Tiberiu LATES
Course holder	Holder of seminar/ laboratory/ project
Jost N.	Jost N.

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

,	
1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Faculty of Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course		Virt	Virtual Instrumentation					
2.2 Course convenor		Pro	Prof. Dr Petru A. COTFAS					
2.3 Seminar/ laboratory/ project		Pro	Prof. Dr Petru A. COTFAS					
convenor								
2.4 Study year	П	2.5 Semester	1	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of which	h: 3.2 lecture	1	3.3 seminar/ laboratory/ project	0/1/0
3.4 Total number of hours in	28	out of whicl	h: 3.5 lecture	14	3.6 seminar/ laboratory/ project	0/14/0
the curriculum						
Time allocation						hours
Study of textbooks, course support, bibliography and notes					42	
Additional documentation in libraries, specialized electronic platforms, and field research					34	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					28	
Tutorial					14	
Examinations					4	
Other activities						
3.7 Total number of hours of student activity 122						

3.8 Total number per semester	150
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	٠	Basic knowledge of computer programming
4.2 competences-related	٠	Using of computers

5. Conditions (if applicable)

5.1 for course development	Classroom with multimedia systems.
5.2 for seminar/ laboratory/	Classroom with necessary systems and PCs.
project development	

6. Specific competences and learning outcomes

	P	
		CP.2 Competences to design systems, equipment and vehicle components
		L.O.2.1 the ability to study, interpret and capitalize on technical resources specific to the motor vehicle
		manufacturing industry;
		L.O.2.3 applying mathematical methods and using calculation and simulation programs to perform
		technical analyzes and design solutions for specific problems;
		CP.3 Competencies for performing tests and practical determinations
		L.O.3.1 To perform experimental, environmental and operational tests on models, prototypes or on
		systems and equipment to test their resistance and capabilities in normal and extreme conditions;
		L.O.3.2 To interpret and analyze data collected during testing, to formulate conclusions, new perspectives
		or solutions.
		L.O.3.5 To simulate and test mechatronic units using appropriate equipment;
		CP.4 Competences to carry out scientific research.
		L.O.4.8 To operate scientific research and laboratory equipment;
		CP.5 Ability to design and develop software
		L.O.5.1 to develop software for motor vehicles and related systems;
ŝ	}	L.O.5.2 understand and apply the principles of programming and software development technologies in
- DUC		the automotive industry;
net	, , ,	L.O.5.3 to evaluate and choose suitable platforms, programming languages and software technologies
		for projects in the automotive industry;
	i i	L.O.5.4 to develop software applications to improve the functionality, performance and safety of motor
Vivi		vehicles;
ofee	5	CP.6 Competences to use CAD-CAM-CAE systems.
Ъ,		L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.
		CT.1 Competences for integration into specific activities at the workplace and technical competences, in
		conditions of autonomy and professional independence
		L.O.1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
-	uces	decisions choosing from several alternative possibilities;
/Pro	eter	CT.2 Communication and teamwork skills
in suc	n p	L.O.2.1 to carry out their work in a team;
Ē	: 0	L.O.2.2 to address an audience, give a speech, make a presentation;

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• Explaining the concepts related to the virtual instrumentation from the
	perspective of using them in designing and managing the electric, electronic
	and mechatronic systems of automobiles.
7.2 Specific objectives	Understanding the specific concepts of virtual instrumentation and using
	graphical programming architectures in solving specific engineering
	problems;
	Gaining practical skills of working with software packages for virtual
	instrumentation dedicated to the management and control of the
	mechatronic systems in auto-vehicles.
	• Gaining the theoretic and applied knowledge about the structure and testing
	for electric, electronic and mechatronic systems of automobiles.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Introduction of the Virtual Instrumentation and	Lecture with cu slides	2 hours	

Graphical System Design concepts. Graphical	improved by		
Programming Language - LabVIEW	conversation, didactic		
Modular Programming. Programming Structures.	demonstration. Learning	2 hours	
Advanced Programming Architectures	through demonstrations	2 hours	
Data acquisition in LabVIEW. Measurements and	by simulation and	4 hours	
data logging in auto-vehicles	hardware using.		
Drivers and communication interfaces with		2 hours	
mechatronic systems in auto-vehicles.			
Virtual Instrumentation applications. Combining the		2 hours	
LabVIEW software with CAD software.			

Bibliography

- 1. P.A. Cotfas, Instrumentație Virtuală, notițe de curs, 2024-2025;
- 2. P. Adrian Cotfas, D. Tudor Cotfas, and H. Hedesiu, Eds., "LabVIEW Virtual Instrumentation in Education and Industry", IntechOpen, Jun. 12, 2024. doi: 10.5772/intechopen.102279.
- 3. H.A. Modran, D. Ursutiu, Instrumentatie virtuala : indrumar de laborator [Resursa electronica], Editura Universitatii Transilvania din Brasov, 2022;
- 4. J. Essick Hands-On Introduction to LabVIEW for Scientists and Engineers, Oxford University Press Inc, 2018;
- P. A. Cotfas, D. T. Cotfas, D. Ursutiu, C. Samoila "NI ELVIS Computer-Based Instrumentation", National Technology & Science Press – USA, ISBN 978-1-934891-11-7, IDS Number: 745SR, ISSN: 1582-2214, 2011;
- 6. P.A. Cotfas "Prelucrarea semnalelor. Aplicatii in LabVIEW", Ed. Lux Libris, ISBN 978-973-131-071-8, Brasov, 2010;
- 7. ***LabVIEW Manual (LabVIEW Help);
- 8. Ghionea, I., Initiere in mediul de programare grafica LabVIEW, www.catia.ro/articole.html , Accesat octombrie 2011;

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number of hours	Remarks
Laboratory introduction. LabVIEW introduction	Conversation	Duration: 2 hours	
Applications based on programming structures	Conversation + individual experiment	Duration: 2 hours	
State-Machine and Producer-Consumer	Conversation + individual	Duration: 2 hours	
architectures in automotive applications	experiment		
Virtual Instruments for monitoring and control	Conversation + individual	Duration: 4 hours	
using sensors and actuators	experiment		
Electric and electronic instruments control based	Conversation + individual	Duration: 2 hours	
on LabVIEW drivers	experiment		
Working with LabVIEW projects. Testing the	Conversation + individual	Duration: 2 hours	
mechatronic systems in auto-vehicles.	experiment		

Bibliography

- 1. P.A. Cotfas, Instrumentație Virtuală, notițe de curs, 2024-2025;
- 2. P. Adrian Cotfas, D. Tudor Cotfas, and H. Hedesiu, Eds., "LabVIEW Virtual Instrumentation in Education and Industry", IntechOpen, Jun. 12, 2024. doi: 10.5772/intechopen.102279.
- 3. H.A. Modran, D. Ursutiu, Instrumentatie virtuala : indrumar de laborator [Resursa electronica], Editura Universitatii Transilvania din Brasov, 2022;
- 4. J. Essick Hands-On Introduction to LabVIEW for Scientists and Engineers, Oxford University Press Inc, 2018;
- P. A. Cotfas, D. T. Cotfas, D. Ursutiu, C. Samoila "NI ELVIS Computer-Based Instrumentation", National Technology & Science Press – USA, ISBN 978-1-934891-11-7, IDS Number: 745SR, ISSN: 1582-2214, 2011;
- 6. P.A. Cotfas "Prelucrarea semnalelor. Aplicatii in LabVIEW", Ed. Lux Libris, ISBN 978-973-131-071-8, Brasov, 2010;

- 7. ***LabVIEW Manual (LabVIEW Help);
- 8. Ghionea, I., Initiere in mediul de programare grafica LabVIEW, www.catia.ro/articole.html , Accesat octombrie 2011;

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of the course assures acquiring knowledge and the necessary skills in the use of modern technologies in the field of virtual instrumentation and the ability to use programming techniques using the LabVIEW graphic programming language with applications in the automotive field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage	
			of the final grade	
10.4 Course	Correct explanation of			
	creating a virtual instrument,			
	implementing an architecture			
	or method using the			
	theoretic knowledge taught.			
	Comparative analysis of			
	certain architectures or			
	programming methods.	Written evaluation on		
	Correct usage of specific	subjective or objective items	7.0%	
	language	Written evaluation on	70%	
	Clarity, coherence and	subjective or objective items		
	concision in presentation			
	Coverage of requested topics			
	Correct explanation of			
	creating a virtual instrument,			
	implementing an architecture			
	or method using the			
	theoretic knowledge taught.			
10.5 Seminar/ laboratory/	Implementation of			
project	architecture or programing	Computer testing and also		
	method for creating a virtual	checking the completion of	30%	
	instrument for information	works during laboratory.		
	acquisition or processing.			
10.6 Minimal performance standard				
• Theoretic trial: getting a minimum score of 4 points from the 9 allocated to the theoretical subjects; a point by				
default.				

• Laboratory: Using modular programing in LabVIEW and accomplishing data acquisition and graphic display of results in the application panel.

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof. Dr. Ing. Ioan Călin Roșca,	Prof. univ. dr. ing. DUGULEANĂ Mihai
J. Roscan	Head of Department
Dean of Faculty of Mechanical Engineering	
Prof. Dr. Petru A. COTFAS,	Prof. Dr. Petru A. COTFAS,
lottas	lottas
Course holder	Holder of seminar/ laboratory/ project

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).
1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	se	e Practice for research and development I						
2.2 Course convenor								
2.3 Seminar/ laboratory/ project		Prof. Ph. D. eng. Florin GÎRBACIA						
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	С	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	12	out of which: 3.2 le	ecture	0	3.3 seminar/ laboratory/ project	0/0/12
3.4 Total number of hours in	168	out of which: 3.5 le	ecture	0	3.6 seminar/ laboratory/ project	168
the curriculum						
Time allocation						hours
Study of textbooks, course support, bibliography and notes					20	
Additional documentation in libraries, specialized electronic platforms, and field research					20	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					16	
Tutorial					0	
Examinations					4	
Other activities					20	
3.7 Total number of hours of student activity 60						
3.8 Total number per semester 228						

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	٠	Elementary concepts of automotive engineering, computer-aided design
4.2 competences-related	٠	Operating with fundamental concepts of engineering sciences.

4

5. Conditions (if applicable)

5.1 for course development	• projector
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers
	Windows operating system, Matlab

6. Specific competences and learning outcomes

	C1. Skills for identifying needs for design
	L.O.1.1 To identify customer needs, using appropriate questions and active listening to identify customer
	expectations, wishes and requirements according to products and services;
	L.O.1.2 To interpret the technical requirements of customers, analyzing, understanding and applying the
	information provided regarding the technical conditions;
	L.O.1.3 To define technical design requirements, by specifying the technical properties of the goods,
	materials, methods, processes, services, systems, software and functionalities, by identifying and
	addressing the specific needs that must be met according to the client's requirements;
	L.O.1.4 To ensure the connection with the engineers from the other departments to ensure a common
	understanding and to discuss the design, development and improvement of the products;
	L.O.1.5 To make design sketches to contribute to the development and communication of design
	concepts.
	C4 The ability to improve safety and comply with technical equipment safety standards
	L.O.4.1 combine mechanical, electrical, electronic, software, and safety engineering to design motor
	vehicles such as trucks, vans, and automobiles.
	C.7 Competences for the development of vehicle manufacturing and assembly technologies, test and
	validation procedures for vehicle components, systems and equipment
	The learning outcomes for the graduate of the master's study program are:
	L.O.7.1 application of advanced concepts and procedures for manufacturing and assembly
	technologies;
	L.0.7.2 evaluation of advanced vehicle manufacturing technologies and their correlation with the
	optimal operating parameters of vehicle systems;
	L.O.7.3 the application and development of specific criteria, procedures and methods for the design of
	modern manufacturing, assembly and maintenance technologies for motor vehicles;
S	L.O.7.4 operation of precision measuring equipment;
- BUCE	L.O.7.5 the ability to draw up the technical documentation related to the manufactured products and
pete	equipment;
ШO	C.8 The ability to improve safety and comply with technical equipment safety standards
al o	L.O.8.1 inspect equipment used during industrial activities, such as manufacturing or construction
sio	equipment, to ensure that the equipment complies with safety and environmental legislation.
ofes	L.O.8.3 to apply the basic security standards and technical standards specific to equipment to prevent
Ч Г	risks related to the use of technical equipment at work.
	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
សួ	L.O.1.3 to show initiative, to be proactive,
ence	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
peti	operating technological installations, tools or digital equipment;
L D D	L.O.1.5 identify problems and make decisions to solve them;
sal c	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
ver	them in his day-to-day activity;
ans	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
ц	

Ct2. Communication and teamwork skills
L.O.2.1 to carry out their work in a team;
L.O. 2.2 to address an audience, give a speech, make a presentation;
L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
conferences or online events;
L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
compromise solutions, resolving conflicts;
L.O.2.6 to be able to lead others, coordinate a team;
L.O.2.7 be able to train other team members and organize information, objects and resources;
L.O.2.8 to motivate others, stimulating action;
L.O.2.9 to develop teams, managing time and delegating responsibilities;
L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Apply scientific knowledge to solve automotive engineering problems.
7.2 Specific objectives	 Practical skills for simulating the development processes of automotive products. Practical skills for working with integrated software packages for controlling
	mechatronic systems of vehicles
	 Development of modern software, innovative methods, principles and
	simulation procedures
	 Development of methods for evaluating research and development projects Developing a management strategy using modern principles and methods

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Not the case			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Clutch model in Simulink	Presentations, examples,		
The suspension system in Simulink	experiments, research on		
Servo electro-hydraulic control in Simulink	the dynamic simulation of		
Development of a C ++ application for dynamic	the vehicle systems,		
simulation of a vehicle	virtual collision modeling	168	
Group projects	and testing, the sensory		
	and control systems of		
	the vehicles, virtual		
	instrumentation		

Bibliography

1. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Brașov, 2016.

2. https://www.mathworks.com/examples/simulink/category/automotive-applications

3. https://www.computoolable.nl

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Through its content and through the elaboration of the thematic portfolio (the study), the masters acquire competences in accordance with the expectations of the epistemic community and of the producers in the car market. The analytical program is in line with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage		
			of the final grade		
10.4 Course					
10.5 Seminar/ laboratory/	Completion of simulations in	Oral presentation	100%		
project	Simulink				
	Development of the C ++				
	program				
	Involvement in practical				
	activities				
	Efficiency in verbal				
	communication				
	(presentation)				
	Completion of simulations in				
	Simulink				
10.6 Minimal performance standard					
Knowledge of Simulink and C++ fundamentals					
Realization of a Simulink simulation for engineering applications					
Realization of practical project					
• The marks for project work must be at least 5.					

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
J. Roscan	HO
	Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Effect	Gener
Course holder	Holder of seminar/ laboratory/ project

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: **FC** (fundamental course) / **DC** (course in the study domain)/ **SC** (speciality course)/ **CC** (complementary course); for the Master level, select one of the following options: **PC** (proficiency course)/ SC (synthesis course)/ **AC** (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Dynamic simulation of vehicle systems in Matlab and C ++					
2.2 Course convenor			Ass	Assoc. Prof. Ph. D. Olivia Florea				
			Pro	Prof. Ph. D. eng. Florin GÎRBACIA				
2.3 Seminar/ laboratory/ project		Assoc. Prof. Ph. D. Olivia Florea						
convenor		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week 4 out of whi		out of whic	h: 3.2 le	cture	2	3.3 seminar/ laboratory/ project	0/0/2
3.4 Total number of hours in	56	out of whic	h: 3.5 le	cture	28	3.6 seminar/ laboratory/ project	0/0/28
the curriculum							
Time allocation ho						hours	
Study of textbooks, course support, bibliography and notes 20						20	
Additional documentation in libraries, specialized electronic platforms, and field research					16		
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					2		
Tutorial 2						2	
Examinations					2		
Other activities					2		
3.7 Total number of hours of student activity 44							

5.7 Total number of nouis of stadent activity	
3.8 Total number per semester	100
3.9 Number of credits ^{₅)}	4

4. Prerequisites (if applicable)

4.1 curriculum-related	Knowledge of the vehicle dynamics	
4.2 competences-related	Operating with fundamental concepts of engineering sciences.	
	MATLAB Fundamentals	
5. Conditions (if applicable)		
5.1 for course development	• projector	
	lecture notes	
	recommended bibliography	
5.2 for seminar/ laboratory/	• projector	
project development	laboratory equipped with computers	
	lecture notes	
	recommended bibliography	

6. Specific competences and learning outcomes

<u> </u>	
	Cp1. Competencies for performing practical tests and determinations
	L.O.1.1 To perform experimental, environmental, and operational tests on models, prototypes or systems
	and equipment to test their resistance and capabilities in normal and extreme conditions;
	L.O. 1.2 Interpret and analyze data collected during testing to formulate conclusions, new insights, or
	solutions.
	L.O.1.3 To record data that has been specifically identified during previous trials, to verify that trial results
	produce specific results;
	L.O.1.4 To collect data and statistics to test and evaluate to generate statements and predictions of
	patterns, to discover useful information in the decision process;
	L.O.1.5 To compare the performance of alternative vehicles based on selected factors;
	Cp2. Software design and development capability
Ges	L.O.2.1. to develop software for motor vehicles and related systems;
tenc	L.O. 2.2 understand and apply the principles of programming and software development technologies in
Ipel	the automotive industry;
con	L.O.2.3 to evaluate and choose suitable platforms, programming languages and software technologies for
nal	projects in the automotive industry;
ssic	L.O.2.4 to develop software applications to improve the functionality, performance and safety of motor
rofe	vehicles;
ā	L.O.2.5 to test and troubleshoot software to ensure the proper and safe operation of vehicle systems;
	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
	work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
	L.O.1.3 to show initiative, to be proactive,
	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
	operating technological installations, tools or digital equipment;
	L.O.1.5 identify problems and make decisions to solve them;
	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
	them in his day-to-day activity;
	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
	Ct2. Communication and teamwork skills
	L.O.2.1 to carry out their work in a team;
	L.O. 2.2 to address an audience, give a speech, make a presentation;
	L.U.2.3 to moderate discussions between two or more people, including in situations such as workshops,
	conferences or online events;
ces	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
tenc	L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
upe	compromise solutions, resolving conflicts;
con	L.U.2.6 to be able to lead others, coordinate a team;
rsa	L.U.2.7 be able to train other team members and organize information, objects and resources;
sve	L.U.2.8 to motivate others, stimulating action;
ran	L.U.2.9 to develop teams, managing time and delegating responsibilities;
	L.U.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Understanding the principles and potential for using advanced Matlab and
	C++ Integrated Development Environments for automotive design.
	Understand and gain advanced knowledge required to develop applications
	for dynamic simulation of vehicle systems based on Matlab and C++.
	• Understanding how to apply basic modeling techniques and tools to develop
	Simulink block diagrams
7.2 Specific objectives	Learning of knowledge for creating dynamic simulation of vehicle systems
	required in automotive design;
	 Learning knowledge for the development of Matlab and C++ software
	applications;
	Acquirement of practical skills for automotive design applications through
	the use of Matlab and C++ programming environments.
	Creating Simulink models and simulating system dynamics
	 Modeling continuous-time, discrete-time, and hybrid systems
	Building hierarchy into a Simulink model

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Introduction. The purpose of the course.	Interactive lecture	2	
Introduction to C++. Terminology, definitions and			
features of C++. Technologies available for dynamic			
simulation of vehicle systems.			
Basics of the C++ language. Getting Started with	Interactive lecture	8	
Microsoft Visual Studio IDE. Variables, data types,			
expressions, operators, pointers, networks,			
functions and structures in C++. Case studies for			
dynamic simulation.			
Vehicle dynamics problems solved in C++. Concepts	Interactive lecture	4	
and principles in object-oriented programming:			
Classes, objects, class hierarchies, Polymorphism.			
Case studies for dynamic simulation.			
Introduction to Simulink	Interactive lecture	4	
Simulink: Creating and Simulating a Model.	Interactive lecture	6	
Modeling Programming Constructs. Modeling			
Discrete Systems. Modeling Continuous Systems			
Simulink: Solver Selection. Developing Model	Interactive lecture	4	
Hierarchy. Modeling Conditionally Executed			
Algorithms. Combining Models into Diagrams			
Dibliggenshu	•	•	•

Bibliography

- 1. Ruxandra Stanescu, Florin Girbacia, Cristian Postelnicu, Programarea calculatoarelor si limbaje de programare. Indrumar de laborator.,Ed. Universitatii Transilvania din Brasov, ISBN 978-606-19-1596-5, 2023.
- 2. Talabă, D., Amditis, A. Product Engineering, Tools and Methods Based on Virtual Reality. Editura Springer, 2007.
- 3. Gîrbacia, F. Talabă, D., Tehnologiile realității virtuale:lucrări practice, Editura Universită ii Transilvania Brașov, 2012.
- 4. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.
- 5. Girbacia, F. Cercetari teoretice si experimentale privind dezvoltarea de interfete multimodale de realitate

virtuala pentru aplicatii de proiectare asistata de calculator,Teza de doctorat,Universitatea Transilvania Brasov, 2007.

- 6. H. Schildt: C++. Editura Manual complet, Teora, 2000
- 7. Learning Simulink, COPYRIGHT 1999 2004 by The MathWorks, Inc.
- 8. Introduction to Simulink, University College of Southeast Norway,

http://home.hit.no/~hansha/documents/matlab/training/Introduction%20to%20Simulink/

Introduction%20to%20Simulink.pdf

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Getting Started with Microsoft Visual Studio C++	Interactive lecture,	2	
IDE	exercises and examples,		
	individual work		
Development of a C++ application for simulating a	Interactive lecture,	4	
vehicle mechanism using procedural programming	exercises and examples,		
	individual work		
Development of a C++ application for the	Interactive lecture,	4	
simulation of a vehicle mechanism using modular	exercises and examples,		
programming	individual work		
Development of a C++ application for dynamic	Interactive lecture,	4	
simulation of a vehicle using OOP	exercises and examples,		
	individual work		
Engine Model in Simulink	Individual work	2	
Anti-Lock Braking System in Simulink	Individual work	2	
Clutch Engagement Model in Simulink	Individual work	2	
Suspension System in Simulink	Individual work	2	
Hydraulic Systems in Simulink	Individual work	2	
Automatic Transmission Control in Simulink	Individual work	2	
Electrohydraulic Servo Control in Simulink	Individual work	2	

Bibliography

1. Ruxandra Stanescu, Florin Girbacia, Cristian Postelnicu, Programarea calculatoarelor si limbaje de programare. Indrumar de laborator,Ed. Universitatii Transilvania din Brasov, ISBN 978-606-19-1596-5, 2023.

- 2. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Brașov, 2016.
- 3. https://www.mathworks.com/examples/simulink/category/automotive-applications

https://www.computoolable.nl

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical and practical approaches demonstrate the latest programming IDE for automotive design. The curriculum is consistent with similar fields addressed to universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Ability to operate with	Written exam	50%
	assimilated knowledge		

10.5 Seminar/ laboratory/	Ability to apply in practice the	Project	50%	
project	assimilated knowledge			
10.6 Minimal performance standard				
Development of a project that uses principles and methods specific to the field of mechanical engineering:				
 Knowledge of the fundamental elements of Matlab and C++, solving dynamic simulation task. 				
Implement a dynamic vehicle system model in Simulink.				
The grades obtained for the project and exam must be at least 5				

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
J. Roscan Dean	H.
	Head of Department
Prof. Ph. D. Olivia Florea,	Prof. Ph. D. Olivia Florea,
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Course holder	Holder of seminar/ laboratory/ project

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Modelling and virtual collision testing					
2.2 Course convenor			Pro	Prof. Ph. D. Eng. Nicolae ISPAS				
2.3 Seminar/ laboratory/ project			Lec	Lecturer Ph. D. Eng. Ionut Alexandru RADU				
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	DC
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of whi	ch: 3.2 le	cture	2	3.3 seminar/ laboratory/	0/1/1
						project	
3.4 Total number of hours in	56	out of whi	ch: 3.5 le	cture	28	3.6 seminar/ laboratory/	0/14/14
the curriculum						project	
Time allocation							hours
Study of textbooks, course support, bibliography and notes					42		
Additional documentation in libraries, specialized electronic platforms, and field research					32		
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays				14			
Tutorial					2		
Examinations					4		
Other activities					4		
3.7 Total number of hours of student activity 94							

5.7 Total number of nours of student activity	94
3.8 Total number per semester	150
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	• strength of materials, materials technology, computer assisted design, finite
	element analysis, passive vehicle safety, vehicle calculation and construction,
	vehicle dynamics
4.2 competences-related	• Operating with fundamental concepts of engineering sciences, Matlab, SIMULINK,
	advanced using computer skils
5. Conditions (if applicable)	
5.1 for course development	• projector
	lecture notes
	recommended bibliography
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers

	lecture notes						
	recommended bibliography						
6. Speci	fic competences and learning outcomes						
	C.3 Competencies for carrying out tests and practical determinations						
	L.O.3.1 To perform experimental, environmental and operational tests on models, prototypes or on systems						
	nd equipment to test their resistance and capabilities in normal and extreme conditions;						
	L.O.3.2 To interpret and analyze data collected during testing, to formulate conclusions, new perspectives or						
	olutions.						
	L.O.3.3 To record the data that was specifically identified during the previous tests, to check if the results of						
	he test produce specific results;						
	L.O.3.4 To collect data and statistics in order to test and evaluate in order to generate statements and						
	redictions of patterns, with the aim of discovering useful information in the decision process;						
	L.O.3.5 To simulate and test mechatronic units using appropriate equipment;						
	L.O.3.8 To test mechatronic units using appropriate equipment, collecting and analyzing data. To monitor and						
	valuate the performance of the system and take measures, if necessary.						
	CP.4 Competences to carry out scientific research.						
	L.O.4.2 To gather information about current trends and styles regarding vehicles and the need for new						
	roducts or services;						
	L.O.4.3 To prepare reports that describe the results and processes of scientific or technical research or						
	valuate its progress. These reports help researchers keep up with recent discoveries;						
	L.O.4.4 To prepare research documents or give presentations to report the results of an ongoing research						
	roject, indicating the analysis procedures and methods that led to the respective results, as well as possible						
	nterpretations of the results;						
	L.U.4.7 To manage research data;						
	L.O.4.8 To operate scientific research and laboratory equipment;						
	L.O.4.9 TO Synchesize information, critically interpret and summarize new and complex information from						
	C.5. Ability to design and develop software						
	L 0.5.5 to test and debug software to ensure the proper and safe operation of vehicle systems:						
	C 6 Skills to use CAD-CAM-CAE systems						
	L 0.6.1 the use of computer-aided design (CAD) systems to contribute to the creation modification analysis						
	ind optimization of an industrial drawing or model.						
Ś	L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.						
ence	C.8 The ability to improve safety and comply with technical equipment safety standards						
pete	L.O.8.1 inspect equipment used during industrial activities, such as manufacturing or construction equipment,						
mo	o ensure that the equipment complies with safety and environmental legislation.						
nal c	L.O.8.2 combine mechanical, electrical, electronic, software and safety engineering to design motor vehicles						
sior	uch as trucks, vans and cars.						
ofes	L.O.8.3 to apply the basic security standards and technical standards specific to equipment to prevent risks						
Pre	related to the use of technical equipment at work.						
	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and						
al ces	professional independence						
/ers	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to						
ans.	work, respecting their commitments;						
Tra							

L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
decisions choosing from several alternative possibilities;
L.O.1.3 to show initiative, to be proactive,
L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
operating technological installations, tools or digital equipment;
L.O.1.5 identify problems and make decisions to solve them;
L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
them in his day-to-day activity;
L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
Ct2. Communication and teamwork skills
L.O.2.1 to carry out their work in a team;
L.O. 2.2 to address an audience, give a speech, make a presentation;
L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
conferences or online events;
L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
compromise solutions, resolving conflicts;
L.O.2.6 to be able to lead others, coordinate a team;
L.O.2.7 be able to train other team members and organize information, objects and resources;
L.O.2.8 to motivate others, stimulating action;
L.O.2.9 to develop teams, managing time and delegating responsibilities;
L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Understanding the principles and potential for using advanced PC-
	CrashIntegrated Development Environments for automotive design.
	• Understand and gain advanced knowledge required to develop applications
	for dynamic simulation of vehicle systems based on Matlab and C++.
	• Understanding how to apply basic modeling techniques and tools to develop
	Simulink block diagrams
7.2 Specific objectives	Learning of knowledge for creating dynamic simulation of vehicle systems
	required in automotive design;
	• Learning knowledge for the development of PC-Crash software applications;
	Acquirement of practical skills for automotive design applications through
	the use of PC-Crash programming environments.
	Creating Simulink models and simulating system dynamics
	 Modeling continuous-time, discrete-time, and hybrid systems
	Building hierarchy into a Simulink model

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Physical-mathematical models used to study vehicle collisions. Legislation Used to Evaluate Car Performance in Collisions	Exposure, plans, figures, schemes, video elements	6 hours	
Implementation of software and physical- mathematical models used by car collision analysis. Package software used to analyze and model collisions involving vehicles. Software used to	Exposure, plans, figures, schemes, video elements	4 hours	

analyze and model collisions involving vehicles			
Modeling vehicle-to-vehicle accidents	Exposure, plans, figures, schemes, video elements	6 hours	
Elements of Biomechanics. Models of occupants and pedestrians. Multibody systems.	Exposure, plans, figures, schemes, video elements	4 hours	
Simulation of vehicle-pedestrian accidents	Exposure, plans, figures, schemes, video elements	2 hours	
FE analysis for virtual modeling of plastic deformation of some elements in the vehicle structure.		4 hours	
Virtual tests for deformable parts of vehicle body.	Exposure, plans, figures, schemes, video elements	2 hours	

Bibliografie

1. Şoica, A., Siguranța pasivă a autovehiculelor, Editura Universității Transilvania din Brașov, Brașov 2010, ISBN 978-973-598-739-8.

2. Beleș, H., Șoica, A., Siguranța activă și pasivă a autovehiculelor, Editura Universității din Oradea, Oradea 2011, ISBN 978-606-10-0651-9.

3. Ispas, N., Șoica, A., Beleș, H., Expertiza si dinamica accidentelor rutiere, Editura Universității din Oradea, Oradea 2011, ISBN 978-606-10-0652-6.

4. Şoica, A., Chiru, A., Ispas, N., Huminic, A., Caroserii și sisteme pentru siguranță pasivă I, Editura Universității Transilvania din Brașov, Brașov 2005, ISBN 973 – 635 – 460 – 1.

5. Şoica, A., Caroserii și sisteme pentru siguranța pasiva II, Editura Universității Transilvania din Brașov, Brașov 2008, ISBN 978 - 973 - 598 - 354 - 3.

6. Câmpian, V.O., Șoica, A., Încercarea și omologarea autovehiculelor, Editura Universității Transilvania din Brașov, ISBN 973 – 735 – 306 – 0 Brașov, 2004

Şoica, A., s.a., Caroserii şi sisteme pentru siguranța pasivă, Reprografia Universității Transilvania din Brașov –
 2003.

8. Nahum, A.M., Melvin, J.W., Accidental Injury, ed. Springer – Verlag, 1996.

9. PC-CRASH 12.0 – Manual de Utilizare, DSD- Dr. Steffan Datentechnik, Austria, 2018.

10. ***Standarde internaționale pentru manechine antropometrice destinate încercărilor de coliziune la impact lateral. ISO/TR 9790-1-6.

11. ***Standarde internaționale privind omologarea și testarea la coliziune a autovehiculelor (R 29 – ECE ONU, R – ECE ONU, R 42 – ECE ONU, R 96 – ECE ONU, NHTSA 214).

8.2 Seminar / laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Vehicle to vehicle accident modeling	Using PC-Crash 15.0	8	
	software		
Vehicle - pedestrian accident modeling	Using PC-Crash 15.0	4	
	software		
Modeling occupant / pedestrian behavior using	Using PC-Crash 15.0	4	
multibody systems	software		
Calculation of injury criteria for occupants on	PC_Crash, MathCad	2	
various body segments.			
Determination of the deformations and overall	PC_Crash, MathCad	4	
stiffness of the structure by virtual modeling of the			
collision tests			

Determination by FEA of the deformations of some	PC_Crash, MathCad	4	
elements of the car's resistance structure			
Student final evaluation	PC_Crash, MathCad	2	
Vehicle to vehicle accident modeling	Using PC-Crash 15.0	8	
	software		
Vehicle - pedestrian accident modeling	Using PC-Crash 15.0	4	
	software		
Modeling occupant / pedestrian behavior using	Using PC-Crash 15.0	4	
multibody systems	software		
Calculation of injury criteria for occupants on	PC_Crash, MathCad	2	
various body segments.			
Determination of the deformations and overall	PC_Crash, MathCad	4	
stiffness of the structure by virtual modeling of the			
collision tests			
Determination by FEA of the deformations of some	PC_Crash, MathCad	4	
elements of the car's resistance structure			
Student final evaluation	PC_Crash, MathCad	2	

Bibliography

Şoica, A., Siguranța pasivă a autovehiculelor, Editura Universității Transilvania din Brașov, Brașov 2010, ISBN 978-973-598-739-8.

2. Beleș, H., Șoica, A., Siguranța activă și pasivă a autovehiculelor, Editura Universității din Oradea, Oradea 2011, ISBN 978-606-10-0651-9.

3. Ispas, N., Șoica, A., Beleș, H., Expertiza si dinamica accidentelor rutiere, Editura Universității din Oradea, Oradea 2011, ISBN 978-606-10-0652-6.

4. Şoica, A., Chiru, A., Ispas, N., Huminic, A., Caroserii și sisteme pentru siguranță pasivă I, Editura Universității Transilvania din Brașov, Brașov 2005, ISBN 973 – 635 – 460 – 1.

5. Şoica, A., Caroserii și sisteme pentru siguranța pasiva II, Editura Universității Transilvania din Brașov, Brașov 2008, ISBN 978 - 973 - 598 - 354 - 3.

6. Câmpian, V.O., Șoica, A., Încercarea și omologarea autovehiculelor, Editura Universității Transilvania din Brașov, ISBN 973 – 735 – 306 – 0 Brașov, 2004

Şoica, A., s.a., Caroserii şi sisteme pentru siguranța pasivă, Reprografia Universității Transilvania din Brașov –
 2003.

8. Nahum, A.M., Melvin, J.W., Accidental Injury, ed. Springer – Verlag, 1996.

9. PC-CRASH 12.0 – Manual de Utilizare, DSD- Dr. Steffan Datentechnik, Austria, 2018.

10. ***Standarde internaționale pentru manechine antropometrice destinate încercărilor de coliziune la impact lateral. ISO/TR 9790-1-6.

***Standarde internaționale privind omologarea și testarea la coliziune a autovehiculelor (R 29 – ECE ONU, R
 26 – ECE ONU, R 42 – ECE ONU, R 96 – ECE ONU, NHTSA 214).

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

- The requirements of the Romanian Motor Vehicle Engineers Society (SIAR);

- Society of Automotive Engineers (SAE USA) requirements;

- EVU Association Europe;
- SC SCHAEFER Romania SA;
- SC DACIA GROUP RENAULT SA;
- SC FORD Romania SA;
- SC AUTOLIV Romania SA.

Theoretical and practical approaches demonstrate the latest programming IDE for automotive design. The curriculum is consistent with similar fields addressed to universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage			
			of the final grade			
10.4 Course	Ability to operate with	Written exam	50%			
	assimilated knowledge					
10.5 Seminar/ laboratory/	Ability to apply in practice the	Project	50%			
project	assimilated knowledge					
10.6 Minimal performance standa	rd					
Development of a project that use	Development of a project that uses principles and methods specific to the field of mechanical engineering:					
 Knowledge of the fundamental elements of PC_Crash solving dynamic simulation task. 						
Implement a dynamic vehicle system model in Simulink.						
• The grades obtained for the project and exam must be at least 5						

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dL.Ong. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
J. Roscan Dean	AD.
	Head of Department
Prof. Ph. D. Eng. Nicolae ISPAS	Lecturer Ph. D. Eng. Ionut Alexandru RADU
14	
с	
l ourse holder	Holder of seminar/ Japoratory/ project
	nonder of Seminary haboratory, project

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);

⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	se		Sensory and control systems of vehicles					
2.2 Course conve	enor		Lecturer PhD Eng. Postelnicu Cristian-Cezar					
2.3 Seminar/ laboratory/ project		Lecturer PhD Eng. Postelnicu Cristian-Cezar						
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	С	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 l	ecture	2	3.3 seminar/ laboratory/ project	0/2/0
3.4 Total number of hours in	56	out of which: 3.5 l	ecture	28	3.6 seminar/ laboratory/ project	0/14/0
the curriculum						
Time allocation						hours
Study of textbooks, course support, bibliography and notes 4						40
Additional documentation in libraries, specialized electronic platforms, and field research					28	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					20	
Tutorial						4
Examinations					2	
Other activities					0	
3.7 Total number of hours of student activity 94						
3.8 Total number per semester 150						

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	Applied electronics
4.2 competences-related	•

6

5. Conditions (if applicable)

5.1 for course development	Lecture room with multimedia equipment and minimum 25 places
5.2 for seminar/ laboratory/	• Lecture room with multimedia equipment, electronic components and materials,
project development	and minimum 25 places

6. Specific competences and learning outcomes

		CP. 2. Competences in the design of systems, equipment and vehicle components
		R.I.2.2 the use of advanced concepts, techniques and principles regarding the design of modern systems
		and equipment for motor vehicles
		CP. 3.
		R.I.3.8 To test mechatronic units using appropriate equipment, collecting and analyzing data. To monitor
		and evaluate the performance of the system and take measures, if necessary.
		CP. 4 Competences to carry out scientific research
		R.I.4.8 To operate scientific research and laboratory equipment
ß		CP. 5 Software design and development capability
enc		R.I.5.2. understand and apply the principles of programming and software development technologies in the
ipet		automotive industry
COL		R.I.5.3 to evaluate and choose suitable platforms, programming languages and software technologies for
nal		projects in the automotive industry
ssion		CP. 8 The ability to improve safety and comply with technical equipment safety standards
ofes		R.I.8.2 combine mechanical, electrical, electronic, software and safety engineering to design motor vehicles
Ţ		such as trucks, vans and cars
		CT.1 Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
		professional independence
a_	ces	R.I.1.9 apply scientific, technological and engineering knowledge, processing complex information,
/ers	eten	operating technological installations, tools or digital equipment
ansv	npe	CT.2 Communication and teamwork skills
Tra	CO	R.I.2.1 to carry out their work in a team

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Acquiring knowledge and forming basic skills in designing and maintaining
	auto control systems.
7.2 Specific objectives	 Knowledge of the types of control systems in vehicles;
	Understanding the role of control systems in vehicles and their operating
	principles;
	• Knowledge of the structure of the control systems and the functional role of
	the components;
	• Acquiring practical and practical skills in the field of electrical measurements.

8. Content

8.1 Course	Teaching methods	Number of	Remarks
		hours	
1. Introduction to computerized systems in motor vehicles:	Presentation;	4	
- Typical structure of control systems;	Conversation (Use of		
- The specifics of automotive control systems;	teaching materials		
- Functions of control systems;	presented with video		
- Requirements and performance of control systems in motor	projector)		
vehicles.	Demonstration (use of		
2. Sensors used in motor vehicles:	representative real	10	
Design, operation and destination of sensors:	devices)		
- Pressure;			
- Acceleration (accelerometers);			
- Oxygen (lambda);			

- Speed;						
- Position / Distance						
- Rotation (gyroscopes);						
- temperature;						
- Humidity;						
- Light.						
3. Data communication in motor vehicles:		8				
- Types of networks used in motor vehicles;						
- CAN network;						
- LIN network						
- The FlexRay Network.						
4. Control systems in motor vehicles:		6				
- Traction control system;						
- Dynamics control system;						
- Safety and comfort control system						
- Communication and navigation system;						
- Control system for information and entertainment;						
- The diagnosis system.						
Bibliography						
1. D. Patranabis, Sensors and Transducer, PHI Learning Pvt. Ltd., 2	004.					
ISBN 973-9428-96-9,	ISBN 973–9428–96–9,					
2. Drugă, C.,N., Cojocaru, A., Senzori și traductoare electrice, Vol.I și	i II, Editura Universită ii "Tran	silvania" Braş	ov, 2009.			
3. A.C.Stanca, Senzori si traductoare, curs în format electronic, Uni	vTB, 2012.					
4. A.C.Stanca, Contribu ii la sistemele de control ale autovehiculelo	r ce utilizează supercondens	atoare, teză d	e			
doctorat, UniTBV, 2010.						
5. Turner, J., Automotive Sensors, Momentum Press, 1 March 2009	9, ISBN: 1606500090.					
6. NI Tutorial "FlexRay Automotive Communication Bus Overview"	http://zone.ni.com/devzone	/cda/tut/p/id	/3352.			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of	Remarks			
	methods	hours				
1. Study of pressure sensors used in motor vehicles	Demonstration,	2				
2. Study of acceleration sensors used in motor vehicles	experiment, direct action,	2				
3. Study of temperature and position sensors used in motor	problem-solving	4				
vehicles						
4. Study of DC motors and step-by-step		2				
5. Study of non-critical control systems (windscreen, doors, 4						
lighting, mirrors, etc.)						
Bibliography	1					
1. A.C.Stanca, Senzori si traductoare, Îndrumar de laborator în form	nat electronic, UnivTB, 2012					
2. S. Barrett, D. Pack, "Atmel AVR Microcontroller Primer: Program	ming and interfacing", Morg	an&Claypool,	2008.			
3. J. Oxer, H. Blemings, Practical Arduino: Cool Projects for Open Source Hardware (Technology in Action), Apress, 2009						

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The curriculum responds to the current requirements regarding the skills that automotive industry specialists must have.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3	
			Percentage	
			of the final	
			grade	
10.4 Course	Written	Written exam		
	Knowledge of concepts;	The subjects cover the key	70%	
	- The ability to apply the accumulated	chapters of the course:		
	knowledge;	sensors, actuators,		
	- The language appropriate to the subject;	communications, and		
	- Attitude towards learning	automotive control systems.		
10.5 Seminar/	Laboratory defend			
laboratory/ project	- Degree of involvement while conducting the	- Direct and systematic	30%	
	experiments;	observation;		
	- Rhythm of activity; keeping the calendar;	- Record progress		
	- Attitude towards laboratory activities;	- Laboratory defend		
	- Ability to understand phenomena			
10.6 Minimal performance standard				
The final average is calculated only if the student gets a minimum of 5 points at the laboratory defend and minimum 5				
points for the written	exam.			

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof. PhD Eng.Ioan Calin ROSCA Dean	Prof. PhD Eng. Mihai DUGULEANA Head of Department
J. Rosca	H
Lecturer PhD Eng. Cristian-Cezar POSTELNICU	Lecturer PhD Eng. Cristian-Cezar POSTELNICU
Course holder	Holder of laboratory
Estehicer	Estetier

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Pra	ctice for research and	devel	opment l		
2.2 Course convenor								
2.3 Seminar/ laboratory/ project		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	С	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	12	out of which: 3.2 lecture	0	3.3 seminar/ laboratory/ project	0/0/12
3.4 Total number of hours in	168	out of which: 3.5 lecture	0	3.6 seminar/ laboratory/ project	168
the curriculum					
Time allocation					
Study of textbooks, course support, bibliography and notes					20
Additional documentation in libraries, specialized electronic platforms, and field research					20
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					16
Tutorial					0
Examinations 4					4
Other activities					20
3.7 Total number of hours of student activity 60					
3.8 Total number per semester 168					

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	٠	Elementary concepts of automotive engineering, computer-aided design
4.2 competences-related	٠	Operating with fundamental concepts of engineering sciences.

5

5. Conditions (if applicable)

5.1 for course development	• projector
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers
	Windows operating system, Matlab

6. Specific competences and learning outcomes

	C1. Skills for identifying needs for design
	L.O.1.1 To identify customer needs, using appropriate questions and active listening to identify customer
	expectations, wishes and requirements according to products and services;
	L.O.1.2 To interpret the technical requirements of customers, analyzing, understanding and applying the
	information provided regarding the technical conditions;
	L.O.1.3 To define technical design requirements, by specifying the technical properties of the goods,
	materials, methods, processes, services, systems, software and functionalities, by identifying and
	addressing the specific needs that must be met according to the client's requirements:
	L.O.1.4 To ensure the connection with the engineers from the other departments to ensure a common
	understanding and to discuss the design, development and improvement of the products:
	L.O.1.5 To make design sketches to contribute to the development and communication of design
	concepts.
	C2 Competences in the design of systems, equipment and vehicle components
	L.O.2.1 To carry out scientific research, to conceive or create new knowledge by formulating questions in
	the field by researching, improving or developing concepts, theories, models, techniques, tools, software
	or operational methods and by using methods and techniques scientific:
	L.0.2.2 To gather information about current trends and styles regarding vehicles and the need for new
	products or services:
	L.O.2.3 To prepare reports that describe the results and processes of scientific or technical research or
	evaluate its progress. These reports help researchers keep up with recent discoveries;
	L.O.2.4 To prepare research documents or give presentations to report the results of an ongoing research
	project, indicating the analysis procedures and methods that led to the respective results, as well as
	possible interpretations of the results;
	L.O.2.5 To synthesize information, critically interpret and summarize new and complex information from
	various sources;
	L.O.2.6 To interact professionally in research and professional environments;
	L.O.2.7 To apply systematic research methods and to communicate with the relevant parties to find
	specific information, evaluating the research results in view of the relevant estimation of the information,
	as well as the related technical systems and their evolutions;
	L.O.2.8 To provide proof of in-depth knowledge and complex understanding of the research field,
	including responsible research, ethical principles and scientific integrity in research matters, respect for
	private life and GDPR requirements, related to research activities in - a certain discipline.
	C3 Skills in using CAD-CAM -CAE systems
	L.O.3.1 using computer-aided engineering programs to perform stress analyzes for engineering projects.
S	C4 The ability to improve safety and comply with technical equipment safety standards
ence	L.O.4.1 combine mechanical, electrical, electronic, software, and safety engineering to design motor
pet	vehicles such as trucks, vans, and automobiles.
ШO	C.8 The ability to improve safety and comply with technical equipment safety standards
al c	L.O.8.1 inspect equipment used during industrial activities, such as manufacturing or construction
sior	equipment, to ensure that the equipment complies with safety and environmental legislation.
lfes	L.O.8.3 to apply the basic security standards and technical standards specific to equipment to prevent
Pro	risks related to the use of technical equipment at work.
	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
ersä	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to
NSU	work, respecting their commitments;
Tra	

L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
decisions choosing from several alternative possibilities;
L.O.1.3 to show initiative, to be proactive,
L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
operating technological installations, tools or digital equipment;
L.O.1.5 identify problems and make decisions to solve them;
L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply
them in his day-to-day activity;
L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
Ct2. Communication and teamwork skills
L.O.2.1 to carry out their work in a team;
L.O. 2.2 to address an audience, give a speech, make a presentation;
L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
conferences or online events;
L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find
compromise solutions, resolving conflicts;
L.O.2.6 to be able to lead others, coordinate a team;
L.O.2.7 be able to train other team members and organize information, objects and resources;
L.O.2.8 to motivate others, stimulating action;
L.O.2.9 to develop teams, managing time and delegating responsibilities;
L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective • Apply scientific knowledge to solve automotive engineering problems.	
 Practical skills for simulating the development processes of automotive processes of vehicles Practical skills for working with integrated software packages for controlling mechatronic systems of vehicles Practical skills of advanced simulation in the design of vehicles Development of modern software, innovative methods, principles and simprocedures Development of methods for evaluating research and development projections Developing a management strategy using modern principles and methods 	roducts. ng nulation ts

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Not the case			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Clutch model in Simulink	Presentations, examples,		
The suspension system in Simulink	experiments, research on		
Servo electro-hydraulic control in Simulink	the dynamic simulation of		
Development of a C ++ application for dynamic	the vehicle systems,	168	
simulation of a vehicle	virtual collision modeling	100	
Group projects	and testing, the sensory		
	and control systems of		
	the vehicles, virtual		

		instrumentation		
Bibliogra	phy			
1. (. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Brașov,			
	2016.			
2. ł	https://www.mathworks.com/examples/simulink/category/automotive-applications			

3. https://www.computoolable.nl

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Through its content and through the elaboration of the thematic portfolio (the study), the masters acquire competences in accordance with the expectations of the epistemic community and of the producers in the car market. The analytical program is in line with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10 3 Percentage		
	10.1 Evaluation enterna	10.2 Evaluation methods	of the final and a		
			of the final grade		
10.4 Course					
10.5 Seminar/ laboratory/	Completion of simulations in	Oral presentation	100%		
project	Simulink				
	Development of the C ++				
	program				
	Involvement in practical				
	activities				
	Efficiency in verbal				
	communication				
	(presentation)				
	Completion of simulations in				
	Simulink				
10.6 Minimal performance standard					
Knowledge of Simulink and C++ fundamentals					
Realization of a Simulink simulation for engineering applications					
Realization of practical pr	Realization of practical project				
The marks for project work must be at least 5					

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
J. Roscan Dean	HO
	Head of Department

Prof. Ph. D. eng. Florin GÎRBACIA,

Course holder

Holder of seminar/ laboratory/ project

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	se		Uni	versity ethics				
2.2 Course convenor								
2.3 Seminar/ lab	orato	ory/ project	Sen	ior lecturer Simona 🖇	DICA,	PhD		
convenor								
2.4 Study year	Ш	2.5 Semester	IV	2.6 Evaluation type	С	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week 1 out of which: 3.2 lecture 0 3.3 seminar/ laboratory/ project					1		
3.4 Total number of hours in 14 out of which: 3.5 lecture 0 3.6 seminar/ laboratory/ project							14
the curriculum							
Time allocation						hours	
Study of textbooks, course support, bibliography and notes					10		
Additional documentation in libraries, specialized electronic platforms, and field research					12		
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					12		
Tutorial							
Examinations					2		
Other activities							
3.7 Total number of hours of student activity 36							

3.8 Total number per semester 5	0
3 9 Number of credits ⁵⁾	0

4. Prerequisites (if applicable)

4.1 curriculum-related	
4.2 competences-related	Communication and academic writing

5. Conditions (if applicable)

5.1 for course development	
5.2 for seminar/ laboratory/	Room equipped with projector/TV, board and marker.
project development	

6. Specific competences and learning outcomes

Professional competences	
	Ct.1 Competences for integration into specific workplace activities, and technical competences, showing
	autonomy and professional independence
	Learning Outcomes. The graduate of the master study program is able to:
	L.O.1.1. assume responsibility for his/her decisions, show willingness to work, meet commitments;
	L.O.1.2. show determination, make decisions by identifying new opportunities;
	L.O.1.3. show initiative, be proactive;
	L.O.1.4. show self-reflection, thinki quickly and accept constructive criticism from colleagues or superiors;
	L.O.1.5 . analyze new issues as they arise, drawing on creative, innovative, analytical, holistic thinking;
	L.O.1.6. ensure customer orientation;
	L.O.1.7. identify problems and make decisions to solve them;
	L.O.1.8. comply with the rules, regulations and guidelines related to a specific field or sector and apply them in
	his/her daily work;
	Ct.2 Communication and teamwork skills
ស	Learning Outcomes. The graduate of the master study program is able to:
ence	L.O.2.1. carry out his/her work in a team;
pete	L.O.2.2. address an audience, deliver visual presentation of data;
mo	L.O.2.3. coordinate communication in a group, including situations such as workshops, conferences or online
sal c	events;
vers	L.O.2.4 use simple digital tools and technologies to communicate, interact and collaborate with others.
ans	L.O2.5 be able to lead others and coordinate a team;
Ч	L.O2.6. be able to train other team members and organize information, objects and resources

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Ethics in scientific research
7.2 Specific objectives	Adapt and apply scientific writing rules in line with international standards.Managing professional writing

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Bibliography			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	Duchlamatication		
8.2.1. Scientific discourse; importance of ethics in	Problematization.	1	
scientific research.	Applications		
8.2.2. Elaboration of academic and scientific work:	Problematization.	2	
Documentation, Research. Scientific databases	Applications	2	
8.2.3. Elaboration of academic and scientific work:	Problematization.	-	
thesis, hypotheses, research methods	Applications	Ζ	
8.2.4. Elaboration of academic and scientific work:	Problematization.	2	

Research methods in engineering	Applications			
8.2.5. Elaboration of academic and scientific work:	Problematization.	2		
Organizing texts, writing the abstract; Applications				
8.2.6. Elaboration of academic and scientific work: Problematization.				
Adapting internationally agreed styles; Applications				
8.2.7. Writing technical/scientific texts (technical Problematization.				
reports, instructions, procedures, user manuals); Applications				
Bibliography				
Alley, M. (2018) The craft of scientific writing. New York: Springer.				

Bailey, S. (2003) Academic Writing: A practical guide for students. London: Routledge.

Barrass, R. (2002) *Scientists Must Write: A guide to better writing for scientists, engineers and students.* London: Routledge.

Laplante, P.A. (2012) Technical writing. Boca Raton: CRC Press Taylor & Francis Group.

Marder, M. P. (2011). *Research methods for science*. Cambridge: Cambridge University Press.

Thiel, D. V. (2014). *Research methods for engineers*. Cambridge: Cambridge University Press

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

- Academic and scientific rigor and honesty;
- Adapt technical writing skills to the future workplace

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage		
			of the final grade		
10.4 Course					
10.5 Seminar/ laboratory/ Applying seminar concepts Written exam 100%					
project					
10.6 Minimal performance standard					
Complying with the rules of scientific writing and obtaining the passing grade					

This course outline was certified in the Department Board meeting on 20/092024. and approved in the Faculty Board meeting on 30/09/2024.

Professor Ioan-Călin ROȘCA, PhD	Professor Mihai DUGULEANĂ, PhD
J. Roscan	AD.
	Head of Department
	Senior lecturer Simona ȘOICA, PhD
	Source -
	Holder of seminar

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: **FC** (fundamental course) / **DC** (course in the study domain)/ **SC** (speciality course)/ **CC** (complementary course); for the Master level, select one of the following options: **PC** (proficiency course)/ SC (synthesis course)/ **AC** (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).