COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	se		Multiphysics Simulations					
2.2 Course convenor		Assoc. Prof. Ph. D. Olivia Florea						
			Prof. Ph. D. eng. Horia ABĂITANCEI					
2.3 Seminar/ laboratory/ project		Assoc. Prof. Ph. D. Olivia Florea						
convenor			Prof. Ph. D. eng. Horia ABĂITANCEI					
2.4 Study year	1	2.5 Semester	1 2.6 Evaluation type E 2.7 Course Content ³⁾				CPC	
			status Attendance type				Attendance type ⁴⁾	AC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/	0/1/1
3.7 Number of mours per week		out of winers 3.2 recture		project	
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/	0/14/14
the curriculum				project	
Time allocation					hours
Study of textbooks, course support, bibliography and notes					70
Additional documentation in libraries, specialized electronic platforms, and field research					75
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					2
Tutorial					2
Examinations					3
Other activities					2

3.7 Total number of hours of student activity	
3.8 Total number per semester	210
3.9 Number of credits ⁵⁾	7

4. Prerequisites (if applicable)

4.1 curriculum-related	Knowledge of Mathematical Analysis, Algad, Special Mathematics, Vehicle
	Dynamics, Fluid Mechanics, Hydraulics
4.2 competences-related • Operating with fundamental concepts of engineering sciences	

5. Conditions (if applicable)

5.1 for course development	Computer room with MATLAB and video projector
5.2 for seminar/ laboratory/	Computer room with MATLAB and video projector
project development	

6. Specific competences and learning outcomes

CP.8 Conducts scientific research

- 8.1. Knowledge:
- R.Î.8.1.6 The graduate is able to synthesize information, critically interpret and summarize new and complex information from various sources.
- 8.2. Skills:
- R.Î.8.2.2 The graduate is able to apply systematic research methods and communicate with relevant parties to find specific information, evaluating research results in view of the relevant estimation of information, as well as related technical systems and their developments.
- 8.3. Responsibility and autonomy:
- R.Î.8.3.1 The graduate is able to develop research documents or give presentations to report the results of a research project carried out, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results.

CP.12 Designs and executes the virtual model of a product

- 12.1. Knowledge:
- R.Î.12.1.2 The graduate will demonstrate fundamental knowledge in the field of computer-aided engineering analysis (CAE): Understanding the basic principles of numerical methods used in CAE: FEM, structural analysis, multi-body dynamics (MBD) simulations
- 12.2. Skills:
- R.Î.12.2.3 The graduate has the ability to prepare models for simulation: and to perform numerical simulations, to interpret the results.
- 12.3. Responsibility and autonomy:
- R.Î.12.3.2 The graduate will demonstrate responsibility for the accuracy and validity of the created models, recognize the limitations of numerical models and the importance of their validation through experimental data or other methods..

CP.13 Develops test procedures

- 13.1.Knowledge:
- R.Î.13.1.1 To interpret and analyze the data collected during testing, to formulate conclusions, new perspectives or solutions.
- 13.2. Skills:
- R.Î.13.2.3 The graduate has the ability to identify problems that may arise and find optimal solutions.
- 13.3. Responsibility and autonomy:
- R.Î.13.3.1 The graduate has the ability to develop test and validation protocols to allow a variety of analyses of automotive components and systems; CP.15 Uses application-specific interfaces 15.1. Knowledge:
- R.Î.15.1.1 The graduate can evaluate and choose platforms, programming languages and software technologies suitable for projects in the automotive industry;

15.1. Skills:

■ R.Î.15.2.1 – The graduate has the ability to understand and apply the principles of programming and software development technologies in the automotive industry;

15.3. Responsibility and autonomy:

■ R.Î.15.3.1 – The graduate has the ability to manage software development projects for automotive vehicles, including planning, budgeting and monitoring progress.

CP.16 Designs the user interface

16.1.Knowledge:

- R.Î.16.1.3 The graduate has in-depth knowledge of specific programming techniques and languages.. 16.2. Skills:
- R.Î.16.2.3 The graduate has the ability to integrate software components with hardware specific to systems or machines (e.g. sensors, actuators, displays, buttons), using appropriate drivers and APIs.. 16.3. Responsibility and autonomy:
- R.Î.16.3.2 The graduate has the ability to effectively manage the time and resources allocated to the development of components, respecting deadlines and budgets.

CT.1 Self-management skills and competences

Learning outcomes. The graduate of the master's study program is able to:

- R.Î.1.1 assume responsibility, accept accountability for their own decisions, showing willingness to work, respecting their commitments;
- R.Î.1.3 show initiative, be proactive,
- R.Î.1.12 respect the norms, regulations and guidelines relating to a specific field or sector and apply them in their daily work;
- R.Î.1.13 plan activities, manage the calendar and resources to complete tasks in a timely manner.

CT.2 Social and communication skills and competences

Learning outcomes. The graduate of the master's study program is able to:

- R.Î.2.1 work in a team;
- R.Î.2.2 address an audience, give a speech, make a presentation;
- R.Î.2.4 use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

,		
7.1 General course objective	Modeling and simulation play a crucial role in the engineering design process.	
	Modern simulation tools allow the creation of complete system models that	
	take into account all interactions, thus creating multi-physics models. These	
	models accelerate the design and testing process, thus saving human and	
	material resources.	
7.2 Specific objectives	Understanding the principles and potential for automated design using	
	advanced integrated development environments Matlab	
	Understanding and acquiring the advanced knowledge necessary to develop	
	applications for dynamic simulation of dynamic systems based on Matlab	

8. Content

Transversal competences

8.1 Course	Teaching methods	Number of hours	Remarks
1. Dynamical systems in Matlab	Interactive course	2	
2. Programming in Matlab	Interactive course	2	

Interactive course	2	
Interactive course	2	
Interactive course	4	
Interactive course	4	
Interactive course	4	
Interactive course	2	
	Interactive course	Interactive course 2 Interactive course 2 Interactive course 2 Interactive course 2 Interactive course 4 Interactive course 4

Bibliography

- 1. Stormy Attaway, Matlab: A Practical Introduction to Programming and problem Solving, Elsevier, 2009
- 2. Nicoleta Breaz, Marian Crăciun, Păstorel Gaşpar, Maria Miroiu, Iuliana Paraschiv-Munteanu, MODELAREA MATEMATICĂ PRIN MATLAB, 2011
- 3. B. Rofffel and B. Betlem, Process Dynamics and Control, Modeling for Control and Prediction, John Wiley & Sons, Ltd 2006
- 4. Luyben, W.L., Process Modeling Simulation, and Control for chemical engineers, McGraw-Hill, 1973.
- 5. Imre-Lucaci Arpad, Ana-Maria Cormoş, MATLAB, exemple şi aplica ii în ingineria chimică, Ed. Presa Universitară Clujeană, Cluj-Napoca, 2008.
- 6. Brian D. Hahn and Daniel T. Valentine Essential MATLAB for Engineers and Scientists, Third Edition, Elsevier, 2006.

7. De Silva, C., Modeling of Dynamics Systems with Engiinering Applications, 2nd Edition, CRC Press, 2022

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
1. Dynamical systems in Matlab	Individual work	2	
2. Programming in Matlab	Individual work	2	
3. Kinematics problems solved in Matlab	Individual work	2	
4. Dynamics problems solved in Matlab	Individual work	2	
5. Graphical representations in Matlab	Individual work	2	
6. Animations in Matlab	Individual work	2	
7. Fractals in Matlab	Individual work	2	
8. Modeling and simulation of a thermo-	Individual work	4	
mechanical dynamic system using Excel and			
Amesim			
9. Modeling and simulation of a hydro-mechanical	Individual work	4	
dynamic system using Excel and Amesim			
10. Modeling and simulation of an electro-chemical	Individual work	4	
dynamic system using Excel and Amesim			
11. Evaluation of simulation results of an applied	Individual work	2	
integrated multiphysics system specific to vehicle			
propulsion systems			

Bibliography

- 8. Stormy Attaway, Matlab: A Practical Introduction to Programming and problem Solving, Elsevier, 2009
- 9. Nicoleta Breaz, Marian Crăciun, Păstorel Gașpar, Maria Miroiu, Iuliana Paraschiv-Munteanu, MODELAREA MATEMATICĂ PRIN MATLAB, 2011

- 10. B. Rofffel and B. Betlem, Process Dynamics and Control, Modeling for Control and Prediction, John Wiley & Sons, Ltd 2006
- 11. Luyben, W.L., Process Modeling Simulation, and Control for chemical engineers, McGraw-Hill, 1973.
- 12. Imre-Lucaci Arpad, Ana-Maria Cormoş, MATLAB, exemple şi aplica ii în ingineria chimică, Ed. Presa Universitară Clujeană, Cluj-Napoca, 2008.
- 13. Brian D. Hahn and Daniel T. Valentine Essential MATLAB for Engineers and Scientists, Third Edition, Elsevier, 2006.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical and practical approaches demonstrate the latest programming ideas for automotive design. The curriculum is consistent with similar fields addressed to universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage
		methods	of the final grade
10.4 Course	Continuous activity and course participation	■ Ongoing	10%
	■ active presence and reasoned	evaluation	
	interventions during the presentation of		
	theoretical notions and demonstrative		
	applications;		
	■ integration of theoretical knowledge into		
	discussions by correlating modeling		
	principles with practical applications in		
	Matlab;		
	demonstration of critical and reflective		
	thinking on multiphysics models, including		
	by analyzing their advantages and		
	limitations in engineering design.		

10 F Comingy/Jahoratory/	Continuous activity and neutrinostics in the	■ Ongoing	20%
10.5 Seminar/ laboratory/	Continuous activity and participation in the	Ongoing	30%
project	laboratory	evaluation	
	■ active participation in Matlab exercises		
	and simulations: running scripts correctly,		
	asking pertinent questions, getting involved		
	in solving problems;		
	■ preparing tasks before the laboratory		
	(reviewing Matlab code, going through		
	course materials, checking previously taught		
	algorithms);		
	■ team collaboration in developing		
	simulation projects (thermo-mechanical,		
	hydro-mechanical, electro-chemical) and		
	arguing their own solutions.		
	Carrying out applied tasks		
	correct solving of the tasks posted on the		
	e-learning platform:		
	Matlab programming exercises for		
	dynamic systems;		
	■ implemented and simulated kinematics		
	and dynamics problems;		
	■ Matlab graphical representations and		
	animations;		
	modeling and simulation of a complete		
	multi-physics system (e.g. car).		
	■ correct use of Matlab software and		
	associated toolboxes;		
	■ the ability to validate and interpret		
	simulation results through comparisons,		
	analyses and coherent explanations.		
		■ Summative	60%
	Practical test (complex test)	assessment	
	■ ability to analyze a new multiphysics	(practical and	
	model and propose the corresponding	oral)	
	Matlab solution;		
	■ creative application of knowledge in		
	solving a problematic engineering situation;		
	■ clarity in organizing the code and		
	explanations.		
	Oral test		
	accuracy of the model;		
	■ explanation of modeling decisions and		
	_		
	choice of parameters;		
	■ fluency, rigor, and autonomy in presenting		
	and interpreting results.		
10.6 Minimal performance standa	rd		

The student demonstrates understanding of the basic notions regarding modeling and simulation of dynamic systems

and the ability to coherently apply them in Matlab to solve elementary multiphysics simulation exercises. Minimum Objectives:

- R.Î.8.1.6: The student can identify information from at least one source and render it simply to support a basic simulation.
- R.Î.8.2.2: The student applies an elementary documentation method (e.g. consulting a Matlab manual) and briefly presents the results.
- R.Î.8.3.1: The student writes a simple report describing the steps and results of a Matlab simulation.
- R.Î.12.1.2: The student recognizes the fundamental notions of multi-body simulation and applies them in a basic Matlab example.
- R.Î.12.2.3: The student prepares a simple model for simulation and provides a general interpretation of the results obtained.
- R.Î.12.3.2: The student recognizes the limitations of the created model and mentions at least one possible source of error
- R.Î.13.1.1: The student correctly interprets the basic results obtained from a Matlab simulation.
- R.Î.13.2.3: The student identifies a simple problem in the simulation (e.g. wrong parameters) and proposes an elementary correction.
- R.Î.13.3.1: The student develops a minimal validation protocol (e.g. compares the simulation results with a simple theoretical value).
- R.Î.15.1.1: The student selects Matlab/Simulink as a suitable platform for solving an elementary simulation.
- R.Î.15.2.1: The student writes and executes a simple Matlab script (basic operations, simple graphics).
- R.Î.15.3.1: The student completes a small simulation project, respecting the established deadline.
- R.Î.16.1.3: The student recognizes basic programming techniques for interfaces and applies them in a simple example.
- R.Î.16.2.3: The student integrates a Matlab/Simulink model with a simple component (e.g. an input/output block).
- R.Î.16.3.2: The student demonstrates that he can manage the time required to perform a simple simulation.

Performance level evaluation grid

Performance level	General description	Features
Excellent (10–9)	Fully masters the concepts of multiphysics modeling and simulation; the solutions are innovative, correct and well documented.	Impeccable use of technical terminology; logical structure in code and documentation; autonomy in developing simulations; critical thinking on results.
Very good (8)	Demonstrates a solid understanding of concepts and correctly applies Matlab methods to multiphysics problems.	Minor code or interpretation errors may occur, but the analysis is coherent and applicable; it correctly explains the choice of parameters and simulation steps.
Good (7)	Understands the basic concepts, but the application in Matlab is partial or incomplete.	Sometimes inaccurate terminology; functional but flawed Matlab scripts; incomplete explanations; superficially interpreted results.
Sufficient (6)	Mechanically applies the basics without critical reflection on the simulation.	Partially correct solutions; frequent code or logic errors; lack of consistency in interpreting results.
Insufficient (<5)	It does not demonstrate understanding of fundamental modeling and simulation concepts.	Theoretical and practical confusion; wrong or non-existent Matlab applications; lack of argumentation and interpretation of results.

This course outline was certified in the Department Board meeting on 08.09.2025 and approved in the Faculty Board meeting on 09.09.2025.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
Dean	Head of Department
Assoc. Prof. Ph. D. Olivia Florea,	Assoc. Prof. Ph. D. Olivia Florea,
Prof. Ph. D. eng. Horia ABĂITANCEI,	Prof. Ph. D. eng. Horia ABĂITANCEI,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course		CAD and Graphics programming						
2.2 Course convenor		Prof. Ph. D. eng. Florin GÎRBACIA						
2.3 Seminar/ laboratory/ project		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
convenor								
2.4 Study year 1 2.5 Semester		1	2.6 Evaluation type	E	2.7 Course	Content ³⁾	PC	
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/1/1
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/14/1
the curriculum					4
Time allocation					hours
Study of textbooks, course support, bibliography and notes					25
Additional documentation in libraries, specialized electronic platforms, and field research					35
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					45
Tutorial					14
Examinations				2	
Other activities				3	

3.7 Total number of hours of student activity	
3.8 Total number per semester	180
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	Knowledge of Mathematical Algebra, Elementary CAD notions Cunoașterea
	algebricii matematice, noțiuni elementare CAD
4.2 competences-related	Operating with fundamental concepts of engineering sciences.

5. Conditions (if applicable)

5.1 for course development	• projector
	• lecture notes
	recommended bibliography
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers
	virtual and augmented reality equipments
	• lecture notes

6. Specific competences and learning outcomes

- Cp1. Uses technical drawing software
 - L.O.1.1 The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.
 - L.O.1.2 The graduate evaluates the usefulness, advantages and limitations of technical drawing software applications.
 - L.O.1.3 The graduate interprets the technical drawings of a product made by the engineer to suggest improvements, to make models of the product or to exploit it.
 - L.O.1.4 The graduate demonstrates autonomy in learning on issues specific to the field.
- Cp2. Design and execute the virtual model of a product
 - L.O.2.1 The graduate will demonstrate in-depth knowledge of the fundamental principles of computational geometry and the mathematical representation of three-dimensional shapes, the differences and applications of wireframe, surface and solid models, as well as the concepts of parametric and direct modeling.
 - L.O.2.2 The graduate has the ability to fluently use CAE/CAD software to create 3D models: This includes modeling complex parts, assemblies, generating technical drawings and applying geometric constraints and relationships.
 - L.O.2.3 The graduate has the ability to optimize product design based on simulation results to improve the performance, reliability or efficiency of an automotive component or system.
 - L.O.2.4 The graduate has the ability to integrate various software tools and manage data transfer between them.
 - L.O.2.5 The graduate will demonstrate autonomy in choosing appropriate modeling tools and methods.
 - L.O.2.6 The graduate will demonstrate a proactive attitude in solving problems, by identifying and addressing technical challenges related to modeling and simulation, seeking innovative and effective solutions.
- Cp3. Prepare prototypes for production
 - L.O.3.1 The graduate will demonstrate in-depth knowledge of the fundamental principles of engineering design: understanding the product development cycle, innovation processes, design thinking and systems design methodologies.
 - L.O.3.2 The graduate has the ability to create detailed digital models, ready for additive manufacturing or other prototyping methods.
 - L.O.3.3 The graduate has the ability to work independently in the design and development phases of prototypes, making informed decisions.
- Cp4. Uses application-specific interfaces
 - L.O.4.1 The graduate can evaluate and choose platforms, programming languages, and software technologies suitable for automotive industry projects.
 - L.O.4.2 The graduate has the ability to understand and apply the principles of programming and software development technologies in the automotive industry.
 - L.O.4.3 The graduate has the ability to manage automotive software development projects, including planning, budgeting, and monitoring progress.

- Ct1. Self-driving skills and competencies
 - L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
 - L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
 - L.O.1.3 to show initiative, to be proactive,
 - L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
 - L.O.1.5 identify problems and make decisions to solve them;
 - L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
 - L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
- Ct2. Social and communication skills and competencies
 - L.O.2.1 to carry out their work in a team;
 - L.O. 2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to use simple digital tools and technologies to communicate, interact and collaborate with others.
 - L.O.2.4 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Enhance the theoretical knowledge of CAD modeling and identifying their
	specific solutions for automotive design;
	Training and skills development of advanced 3D graphics programming;
	Develop specific programming skills in CAD / CAE languages ;
	Enhance the techniques of computer aided design of parts / assemblies on
	which the virtual prototype of the product is achieved throughout the life
	cycle;
	Training and skills development of students on the use of specialized
	equipment currently used in CAD and 3D graphics programming.
7.2 Specific objectives	Develop the capacity to p implement projects in automotive design;
	Develop skills on three-dimensional modelling of parts and assemblies;
	Develop skills in using adequate CAD programs to accurate and fast solving
	of graphics representations.
	Develop skills in 3D graphics programming.
	Develop skills in specific programming CAD / CAE languages.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Introduction. The aim of the course. Framing 3D	Interactive lecture	2 hours	
modeling and programming in assisted			
engineering. Current automotive design			
requirements. Product development using CAD /			
CAE and 3D graphics.			
3D graphics-aided design: defining basic elements	Interactive lecture	2 hours	
and algorithms.			
Geometric modeling – Curve entities; analytic and	Interactive lecture	2 hours	
synthetic. Surface entities; Ruled, tabulated, Coons,			
Bezier, and B-spline surfaces. Advance Surface			

modeling.		
Methods of creating solid models: Boundary	Interactive lecture	2 hours
Representation (B-rep), Euler operator,		
Euler/Poincare formula. Constructive Solid		
Geometry (CSG), primitive solids, Boolean		
operations. Parametric Modeling, feature-based		
modeling.		
Basics of assembly, Top-Down and Bottom-Up	Interactive lecture	2 hours
design, degrees of freedom, mating components		
Architecture CAD software. CAD development	Interactive lecture	2 hours
kernels. Typical functionality of professional CAD		
software. Commercial CAD software - features and		
performance.		
Intelligent CAD systems (KBD). Knowledge	Interactive lecture	2 hours
representation. Description of the Intelligent CAD		
systems.		
CAD applications programming using Visual Basic.	Interactive lecture	4 hours
Syntax elements. Common programming		
techniques.		
3D graphics programming using OpenGL.	Interactive lecture	4 hours
Algorithms for 3D graphics programming. Modeling		
of primitives using OpenGL. Generic surface		
modeling. 3D transformations. 3D viewing.		
Advanced lighting techniques. Visualization		
techniques: perspective view, rendering, lighting,		
image control.		
Computer animation. Methods for obtaining	Interactive lecture	2 hours
frames. Method "keyframe" (keyframes).		
Simulation method. Techniques for obtaining		
frames. Creating animations using OpenGL and		
VRML languages.		
Demonstration applications of CAD systems and	Interactive lecture	4 hours
advanced programming algorithms and		
visualization of 3D graphics in automotive design.		

Bibliography

- 1. Gîrbacia Florin, Computer Aided Design: course notes, Editura Universității Transilvania din Brașov, 2020. ISBN 978-606-19-1332-9.
- 2. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.
- 3. Talabă, D., Bazele CAD. Proiectare asistată de calculator. Editura Universită ii Transilvania, Brașov, 2000.
- 4. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universită ii Transilvania Brașov, 2012.
- 5. Preda, I., Inginerie asistată de pentru autovehicule, Editura Universită ii Transilvania din Brașov, 1998.
- 6. C. Anghel, G. Şimon, Grafică Tehnică Asistată de Calculator, Editura Risoprint, Cluj-Napoca, 2008.
- 7. D. Dragomir, CAD Proiectare asistată de calculator pentru inginerie mecanică, Editura Teora, 1996.
- 8. Zeid, I., Mastering CAD CAM, McGraw Hill, 1991.
- 9. Lee, Kunwoo, Principles of CAD/CAM/CAE Systems, Addison/Wesley, 1999.
- 10. Hearn, D., Baker P., "Computer Graphics with OpenGL", Prenticel Hall, 2003.
- 11. Foley J. D., Van Dam A., Feiner S. K., Hughes J. F., Computer Graphics Principles and Practice, Second Edition in C, Pearson Education, 2003.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Getting on the use and configuration of CATIA	Interactive lecture,	2 hours	
program, specific terms. Sketching techniques.	exercises and examples,		
Sketcher CATIA Module. Constraints modeling	individual work		
tools. Profile modeling tools. Operation modeling			
tools.			
Solid modeling module. CATIA Part Design module.	Interactive lecture,	4 hours	
Sketch-Based Modelling Tools Features. Surface-	exercises and examples,		
Based Features. Dress-up Features.	individual work		
Transformation Features. Boolean Operations.			
Creating models for assemblies, CATIA Assembly	Interactive lecture,	2 hours	
Design module. Product Structure Tool assembly	exercises and examples,		
tools. Constraints Tool assembly tools. Features	individual work		
Assembly assembly tools. Applications in vehicle			
design.			
CATIA CAD applications programming using Visual	Interactive lecture,	6 hours	
Basic. Creating script files. Saving and running a	exercises and examples,		
script file. Creating GUI.	individual work		
OpenGL programming applications for automotive	Interactive lecture,	2 hours	
design.	exercises and examples,		
	individual work		
VRML programming applications for automotive	Interactive lecture,	6 hours	
design.	exercises and examples,		
	individual work		
Developing applications in automotive design.	Interactive lecture,	6 hours	
	exercises and examples,		
	individual work		

Bibliography

- 1. Gîrbacia Florin, Computer Aided Design: course notes, Editura Universității Transilvania din Brașov, 2020. ISBN 978-606-19-1332-9.
- 2. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Brașov, 2016.
- 3. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universită ii Transilvania Brașov, 2012.
- 4. Gîrbacia Florin, Duguleană Mihai (2019): Virtual and augmented reality in automotive design and maintenance: course notes, Editura Universitatii Transilvania din Brasov, ISBN 978-606-19-1124-0.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical knowledge underpins the latest approaches in programming and 3D modeling for the field of automotive design. The analytical curriculum is consistent with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	The ability to apply the	Written exam	50%
	knowledge of design and		
	assisted graphics		
10.5 Seminar/ laboratory/	The ability to use modern	Solving practical applications	50%
project	CAD and graphic		
	programming techniques,		
	skills and tools		

10.6 Minimal performance standard

- Knowledge of the fundamentals of CAD graphics programming
- Modeling an interactive virtual 3D environment for engineering applications
- Carrying out laboratory work
- The grades obtained for the project and exam activity must be at least 5

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA, Dean	Prof. dr. ing. Mihai DUGULEANĂ, Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design (in English)

2. Data about the course

2.1 Name of course			Dyr	Dynamics of multibody systems				
2.2 Course convenor		Pro	Prof.dr.ing. Antonya Csaba					
2.3 Seminar/ laboratory/ project		Pro	Prof.dr.ing. Antonya Csaba					
convenor								
2.4 Study year	1	2.5 Semester	1	2.6 Evaluation type	Ε	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CFC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/1/1
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/14/1
the curriculum					4
Time allocation					hours
Study of textbooks, course support, bibliography and notes					70
Additional documentation in libraries, specialized electronic platforms, and field research					50
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					24
Tutorial					7
Examinations					3
Other activities					0

3.7 Total number of hours of student activity	
3.8 Total number per semester	
3.9 Number of credits ⁵⁾	7

4. Prerequisites (if applicable)

4.1 curriculum-related	•
4.2 competences-related	Basic knowledge of mechanics

5. Conditions (if applicable)

5.1 for course development	Classroom, video projector
5.2 for seminar/ laboratory/	Laboratory with computers
project development	

- C.2 Competences to carry out scientific research.
 - L.O.2.1 To carry out scientific research, to conceive or create new knowledge by formulating questions in the field by researching, improving or developing concepts, theories, models, techniques, tools, software or operational methods and by using methods and techniques scientific;
 - L.O.2.2 To gather information about current trends and styles regarding vehicles and the need for new products or services;
 - L.O.2.3 To prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers keep up with recent discoveries;
 - L.O.2.4 To prepare research documents or give presentations to report the results of an ongoing research project, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results;
 - L.O.2.5 To synthesize information, critically interpret and summarize new and complex information from various sources;
- C.4 Skills to use CAD-CAM-CAE systems
 - L.O.4.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimization of an industrial drawing or model;
- L.O.4.2 using computer-aided engineering programs to perform stress analyzes for engineering projects. C.5 Ability to design and develop software
 - L.O.5.1 to develop software for motor vehicles and related systems;
 - L.O.5.2 understand and apply the principles of programming and software development technologies in the automotive industry;
 - L.O.5.3 to evaluate and choose suitable platforms, programming languages and software technologies for projects in the automotive industry;
 - L.O.5.4 to develop software applications to improve the functionality, performance and safety of motor vehicles;
 - L.O.5.5 to test and debug software to ensure the proper and safe operation of vehicle systems;
 - L.O.5.6 to integrate software systems in the global architecture of motor vehicles, taking into account security and compatibility aspects;
 - L.O.5.7 manage automotive software development projects, including planning, budgeting and monitoring progress.
- C.6 Skills to use CAD-CAM-CAE systems
 - L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimization of an industrial drawing or model;
 - L.O.6.2 the use of computer-aided manufacturing (CAM) programs to control machines and machine tools in the creation, modification, analysis or optimization processes as part of the manufacturing processes of motor vehicle parts;
 - L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.
- Ct.1 Competences for integration into specific activities at the workplace and technical competencies, in conditions of autonomy and professional independence
 - L.O.1.1 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
 - L.O.1.2 to show initiative, to be proactive,
 - L.O.1.3 to provide advice to colleagues, offering suggestions on the best way forward;
 - L.O.1.4 to be able to work in a team but also independently develop their own ways of doing things, showing the desire to learn,
 - L.O.1.5 to analyze new problems, based on creative, innovative, analytical, and holistic thinking;

- Ct.2 Communication and teamwork skills
 - L.O.2.1 to carry out their work in a team;
 - L.O.2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops, conferences or online events;
 - L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	The objective of this course is to present the theoretical knowledge of the foundations
objective	of Multibody Dynamics with applications in Automotive Engineering: analytical
	foundations for the systematic generation of motion equations, numerical methods for
	their solution and interpretation of simulation results.
7.2 Specific objectives	Become familiar with methodology, algorithms and software for kinematic and
	dynamic simulation of complex mechanical systems, automotive systems (automotive
	and mechanical subsystems composed of rigid elements)
	Given a mechanical system, understand how to generate in a systematic and general
	fashion the equations that govern the time evolution
	Have a basic understanding of the techniques (numerical methods) used to solve the
	equation of motion for multibody systems
	Be able to use software to simulate and interpret the dynamics associated with
	complex mechanical systems
	Laboratory exercises and the project aimed at introducing multibody systems simulation
	tools: software tools MSC.Adams and/or Matlab-Siscape-Multibody

8. Content

8.1 Course	Teaching methods	Number	Remarks
		of hours	
Introduction. Background, classification of methods,	The use of classical and	2	
history, modelling fundamentals, computational	multimedia teaching		
methods.	techniques (computer, video		
	projector)		
Kinematic analysis of multibody systems (MBS)	Teaching based on significant	10	
Analysis of elements in MBS	examples to provide		
Bodies: classification, representation	motivation and explanation of		
Connections between bodies: joints, degrees of	the basic concepts and specific		
freedom	methods, highlighting the		
The degree of freedom of the MBS, loops, topology	relevant ideas		
map			
Translation and rotation; coordinate transformation			
Velocity and acceleration			
Generalized coordinates			
Formulation of the kinematic model			
Absolute and relative constraints			
Constraint equations imposed by joints			
Driver constraints, motion			
Kinematic analysis: equations for kinematics			
Solving nonlinear equations for the kinematic model,			

	I		1
the Newton-Raphson method			
The Jacobi matrix			
Equations for computing velocity and acceleration			
The multi-body algorithm for kinematics			
Dynamic analysis of multibody systems		8	
Dynamical model for a system of rigid bodies			
Euler-Lagrange formulation			
Mass and mass distribution			
Principle of Virtual Work, virtual Displacements			
D'Alembert's Principle			
Variational equation of motion for a rigid body			
Newton-Euler Equations			
Forces and torques acting on a body			
External forces, load cases			
Lagrange multiplier theorem			
Lagrange form of the constrained equations of motion			
Forces acting on MBS			
Force-generating elements: springs, dampers			
Input data defining the dynamic model of the MBS			
Formulating dynamic model, Newton-Euler equations,			
Lagrange multipliers			
Automatic formulation of dynamic equations			
Numeric integration of the equation of motion			
Initial Conditions			
Euler's method			
Runge-Kutta methods			
Multi-step methods			
Numerical solution methods for differential-algebraic			
equations			
Newmark's integration formulas			
Determination of the joint forces			
Invers dynamics			
Equilibrium analysis			
Optimization of complex multibody systems		4	
Adapting the design parameters kinematic / dynamic			
function moving purposes			
Adapting motion parameters to a function design goal			
Commercial packages like MSC ADAMS/Matlab-		4	
Simscape-Multiboody			
Commercial software can automatically generate and			
solve for the response of complex MBS			
Shortcomings of these methods, issues related to			
kinematics, forward and inverse dynamics, and			
singularities.			
Riblingraphy	<u>ı</u>		

Bibliography

Haug, E. J., Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods, Wiley, 1989.

Shabana, A. A., Dynamics of Multibody Systems, Cambridge University Press, 2005.

Wittenburg, J. Dynamics of Multibody Systems, Springer-Verlag, 2008.

Jalon, J.G., Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems – The real time challenge, Springer-Verlag, 1994.

Schiehlen W. O., Multi-body Systems Handbook, Springer Verlag, Berlin-New York, 1990.

Nikravesh P. E., Planar Multibody Dynamics: Formulation, Programming and Applications, Taylor & Francis Group, 2008.

Hahn, R., Rigid Body Dynamics of Mechanisms, Springer, 2002

Talabă D., Mecanisme Articulate. Proiectare Asistată de Calculator, Transilvania University Press, 2001

Negrut D., Kinematics and Dynamics of Machine Systems, University of Wisconsin, Madison

Geradin, M., Cardona A., Flexible Multibody Dynamics, Wiley, 2001.

Antonya, Cs., Simularea grafică a sistemelor de corpuri, Editura Transilvania University Press, 2004.

Antonya, Cs., Boboc, R.G., Mechanisms: theory and examples. Transilvania University Press, 2023.

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number	Remarks
		of hours	
1. Kinematic analysis of MBS	Experimental activity on	2	
2. Dynamic analysis of MBS with rigid elements	multibody systems developed	2	
3. Dynamic analysis of MBS with rigid elements,	with Matlab-Simscape-	2	
equilibrium	Multibody or MSC ADAMS.		
4. Inverse dynamics	Explanations, examples,	2	
5. Presentation of results and graphical simulation of	interactivity, case studies	2	
MBS			
6. Optimization of MBS		2	
7. Evaluation.		2	
Project:		7 x 2	
Theoretical subject: write a report of 4-5 pages about			
an imposed theoretical topic.			
MBS simulation in MSC ADAMS or Matlab-Simscape-			
Multibody (kinematic and/or dynamic). Write a 5-6			
pages report about the model with:			
■ Model description			
■ Simulation premises			
■ Initial conditions			
■ Components, degrees of freedom, joints, forces,			
masses			
■ Building the model			
■ Results, interpretation of results			
The model will have more than 4 bodies. It can be a			
kinematic or dynamic simulation, but motivate your			
decision.			

Bibliography

ADAMS User Guide MSC Software

Haug, E. J., Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods, Wiley, 1989.

Shabana, A. A., Dynamics of Multibody Systems, Cambridge University Press, 2005.

Wittenburg, J. Dynamics of Multibody Systems, Springer-Verlag, 2008.

Schiehlen W. O., Multi-body Systems Handbook, Springer Verlag, Berlin-New York, 1990.

Nikravesh P. E., Planar Multibody Dynamics: Formulation, Programming and Applications, Taylor & Francis Group, 2008.

Hahn, R., Rigid Body Dynamics of Mechanisms, Springer, 2002

Talabă D., Mecanisme Articulate. Proiectare Asistată de Calculator, Transilvania University Press, 2001

Negrut D., Kinematics and Dynamics of Machine Systems, University of Wisconsin, Madison Antonya, Cs., Simularea grafică a sistemelor de corpuri, Editura Transilvania University Press, 2004. Antonya, Cs., Boboc, R.G., Mechanisms: theory and examples. Transilvania University Press, 2023.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Studying theoretical subjects and applications ensures the formation of skills related to the design and analysis of multibody systems of motor vehicles and understanding the interaction of mechanical systems. These skills are needed in the design and analysis of modern vehicles. Completing the course involves knowing and using software tools for designing modern mechanical systems in an integrated and optimal approach.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Course	Using basic knowledge to explain and interpret algorithms for multibody systems	Oral examination	33%
10.5 Seminar/ laboratory/ project	According to the project subject (theoretical and simulation)	Presentation	67%

10.6 Minimal performance standard

- Use basic knowledge to explain and interpret algorithms for multibody systems,
- Elaboration of a project with an imposed theme,
- The grades obtained for the homework and exam must be at least 5.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA, Dean	Prof.dr.ing. Mihai DUGULEANĂ, Head of Department
Prof.dr.ing. Csaba ANTONYA, Course holder	Prof.dr.ing. Csaba ANTONYA, Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);

- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transports
1.4 Field of study ¹⁾	Master of Automobiles Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Trib	ology				
2.2 Course convenor			Pro	Prof. Ph.D. Eng. Radu Velicu/ Prof. Ph.D. Eng. Daniel Munteanu				
2.3 Laboratory			Pro	Prof. Ph.D. Eng. Radu Velicu/ Conf. Ph.D. Eng. Camelia Gabor				
2.4 Study year I 2.5 Semester		1	2.6 Evaluation type	Ε	E 2.7 Course Content ³⁾		DAP	
					status	Attendance type ⁴⁾	DI	

3. Total estimated time (hours of teaching activities per semester)

or rotal estimated time (notifs or teaching activities per semester)							
3.1 Number of hours per week	of hours per week 4 out of which: 3.2 lecture 2 3.3 seminar/ laboratory/ project		0/2/0				
3.4 Total number of hours in	s in 56 out of which: 3.5 lecture 28 3.6 seminar/ laboratory/ project		0/28/0				
the curriculum	riculum						
Time allocation					hours		
Study of textbooks, course support, bibliography and notes							
Additional documentation in libraries, specialized electronic platforms, and field research							
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays							
Tutorial					14		
Examinations							
Other activities							

3.7 Total number of hours of student activity	124
3.8 Total number per semester	180
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	Solid mechanics; Strength of Materials, Machines Parts	
4.2 competences-related	•	Knowledge and abilities to work in one or more standard or high-level
	programming languages (e.g., Excel, Matlab)	

5. Conditions (if applicable)

5.1 for course development	classroom, projector
5.2 for seminar/ laboratory/	computer room, dedicated software, testing devices
project development	

6. Specific competences and learning outcomes

PC.1 Adjusts product designs

Learning outcomes

- 1.1 Knowledge
- L.O.1.1.1 The graduate has the ability to interpret the technical requirements of customers, analyzing, understanding and applying the information provided regarding the technical conditions;
- L.O.1.1.2 The graduate has the ability to define technical design requirements, by specifying the technical properties of goods, materials, methods, processes, services, systems, software and functionalities, by identifying and addressing the specific needs that must be satisfied according to the customer's requirements; 1.2 Skills
- L.O.1.2.1 The graduate has the ability to use advanced concepts, techniques and principles regarding the design of modern systems and equipment for motor vehicles; R.Î.1.2.5 develop test protocols for motor vehicle components and equipment;
- 1.3 Responsibility and autonomy
- L.O.1.3.1 planning and managing various types of resources (human, financial, deadlines) of the activities and results of a given project; monitoring the degree of achievement of specific project objectives within a certain period of time and with a predetermined budget;

PC.2 Analyzes production processes in order to improve

Learning outcomes

- 2.1. Knowledge
- L.O.2.1.1. The graduate identifies and explains the basic concepts, theories and methods of the field of automotive engineering and the specialization.
- L.O.2.1.2. The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.
- 2.3. Responsibility and autonomy
- L.O.2.3.1. The graduate demonstrates autonomy in learning on issues specific to the field.

PC.3 Anticipates changes in automotive technology

Learning outcomes

- 3.1. Knowledge
- L.O.3.1.1. The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.
- 3.2. Skills
- L.O.3.2.1. The graduate demonstrates knowledge and use of advanced analysis methods in the construction and operation of automotive vehicles.
- 3.3. Responsibility and autonomy
- L.O.3.3.1. The graduate demonstrates autonomy in learning on issues specific to the field.

PC.8 Conducts scientific research

Learning outcomes

8.1 Knowledge

L.O.8.1.1 The graduate demonstrates in-depth knowledge and complex understanding of the research field, including responsible research, ethical principles and scientific integrity in research, respect for privacy and GDPR requirements, related to research activities in a given discipline.

L.O.8.1.2 The graduate conducts scientific research, conceives and creates new knowledge by formulating questions in the field through research, improvement or development of concepts, theories, models, techniques, instruments, software or operational methods and by using scientific methods and techniques; L.O.8.1.5 The graduate is able to prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers to keep up with recent discoveries; L.O.8.1.6 The graduate is able to synthesize information, interpret and critically summarize new and complex information from various sources.

8.2 Skills

L.O.8.2.1 The graduate is able to operate scientific and laboratory research equipment;

L.O.8.2.2 The graduate is able to apply systematic research methods and communicate with relevant parties to find specific information, evaluating research results in view of the relevant estimation of information, as well as related technical systems and their developments

8.3 Responsibility and autonomy

L.O.8.3.1 The graduate is able to develop research documents or give presentations to report the results of a research project carried out, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results.

L.O.8.3.3 The graduate is able to manage data in the field of research.

CP.13 Develops test procedures

Learning outcomes

13.1 Knowledge

L.O.13.1.1 Interpret and analyze data collected during testing, to formulate conclusions, new perspectives or solutions.

L.O.13.1.2 Record data that has been specifically identified during previous tests, to verify that the test results produce specific results;

L.O.13.1.3 Collect data and statistics for testing and evaluation to generate statements and pattern predictions, in order to discover useful information in the decision-making process;

13.2 Skills

L.O.13.2.1 The graduate has the ability to operate precision measuring equipment;

L.O.13.2.3 The graduate has the ability to identify problems that may arise and find optimal solutions;

L.O.13.2.8 The graduate has the ability to select, acquire and use automotive testing equipment;

L.O.13.2.9 The graduate has the ability to evaluate the possibility that a system or its components can be obtained by applying certain engineering principles.

13.3 Responsibility and autonomy

L.O.13.3.1 The graduate has the ability to develop test and validation protocols to allow a variety of analyses of automotive components and systems;

TC.1 Self-driving skills and competences

Learning outcomes.

The graduate of the master's study program is able to:

L.O.1.1 assume responsibility, accept accountability for their own decisions, showing willingness to work, respecting their commitments;

L.O.1.2 to demonstrate determination, making sustained efforts for success by pursuing clear objectives, to make decisions by choosing from several alternative possibilities;

R.Î.1.9 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, instruments or digital equipment;

L.O.1.13 to plan activities, manage the calendar and resources to complete tasks in a timely manner.

TC.2 Social and communication skills and competences

Learning outcomes.

Transversal competences

The graduate of the master's study program is able to:

L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	The acquisition by students of fundamental concepts in tribology as a
	science that addresses phenomena of friction, lubrication, and wear in
	relation to practical applications.
	The purpose of the lab is to introduce students to high-performance
	equipment for analyzing friction, lubrication, lubricant properties, and wear.
7.2 Specific objectives	Understanding the phenomena and mechanisms of friction
	Understanding the role of lubrication and the necessary properties of
	lubricants
	Understanding the phenomena of boundary, mixed, and hydrodynamic
	lubrication
	 Understanding the mechanisms of wear development, conditions of
	occurrence, and methods of reduction
	Developing practical skills for operating specific equipment to measure
	defining parameters for friction, lubrication, and wear phenomena

8. Content

8.1 Course	Teaching	Number of	Remarks
	methods	hours	
1.Introduction (meaning of friction, lubrication and wear).	Lectures,	2 hrs	
	discussion		
2.Dry friction (surfaces topography of solids, model of contact, friction and	Lectures,	2hrs	
wear, stick-slip)	discussion		
3.Wear (Abrasive, erosive and cavitation wear, fatigue wear (sliding,	Lectures,	2hrs	
rolling)	discussion		
4.Wear (Abrasive, erosive and cavitation wear, fatigue wear (sliding,	Lectures,	2hrs	
rolling)	discussion		
5.Lubricants (dynamic and kinematic viscosity, viscosity-temperature	Lectures,	6hrs	
relationship, viscosity-pressure relationship, measurements,	Discussion		
classification, types of lubricants and their description - mineral and			

synthetic oils, greases; additives)		
6.Hydrodynamic lubrication (Conditions for HDL, simplifying assumptions,	Lectures,	6hrs
Reynolds equation, simplifications, bearing parameters from Reynolds eq.,	Discussion	
application for journal bearings - pressure distribution, load capacity,		
friction, power loss; Stribeck curve, squeeze films and Reynolds eq.)		
7.Improving the tribological properties of metallic parts by diffusion	PPT	4hrs
surface treatments - surface modification by altering surface chemistry	presentation,	
(high temperature diffusion treatments: carburizing and carbonitriding;	discussion	
low temperature diffusion treatments: nitriding and nitrocarburizing –		
principles, technological parameters, mechanical and tribological		
surface properties before and after treatment).		
8.Integrating tribological coating systems into the surfaces design	PPT	4hrs
process – surfaces modification by adding new material onto the	presentation,	
surface (tribological coatings and their properties, deposition	discussion	
technologies and technological parameters – advantages and		
disadvantages, applications, substrates preparation, duplex processes).		
9.Micro-nanomechanics/micro-nanotribology (tribological thin films	PPT	2hrs
and multilayers, surfaces topography by AFM and STM, micro-scale	presentation,	
friction, atomic scale friction, directionality effect on microfriction,	discussion,	
micro/nanoindentation – hardness and elastic modulus, micro/nano		
wear and scratching, boundry lubrication		
10.Micro-nanomechanics/micro-nanotribology (tribological thin films	PPT	2hrs
and multilayers, surfaces topography by AFM and STM, micro-scale	presentation,	
friction, atomic scale friction, directionality effect on microfriction,	discussion,	
micro/nanoindentation – hardness and elastic modulus, micro/nano		
wear and scratching, boundry lubrication		
Ribliography		

Bibliography

- 1. Gohar, R., Rahnejat, H. Fundamentals of tribology, Imperial College Press, 2012
- 2. Stachowiak, G.W., Batchelor, A.W. Engineering tribology, Elsevier, 3rd ed. 2005
- 3. John Williams Engineering Tribology, 2005
- 4. Shizhu Wen, Ping Huan Principles of Tribology, 2012
- 5. Ohring, M., Materials Science of thin films Deposition & Structure, 2nd edition, Academic Press, San Diego, 2012.
- 6. Campbell, D.S., Handbook of Thin Film Technology, eds. L.I. Maissel and R. Glang, McGraw-Hill, New York, 1970.
- 7. CSM Instruments, Manual of Instrumentation methods, Pesseux, Switzerland, 2011.
- 8. Ohring, M., Engineering Materials Science, Academic Press, San Diego, 1995.
- 9. Hoffman, R.W., Physics of thin films, academic Press, New York, 1996.
- 10. Nix, W.D., Metallurgical Trans., 20A, 2217, (1989).
- 11. Daniel Munteanu, Camelia Gabor, ș.a., Straturi subtiri de tip Ti-Si-C si Ti-O-C obtinute prin pulverizare reactiva in sistem magnetron, Editura Universitatii Transilvania din Brasov, 2007.

8.2 Laboratory	Teaching-	Number of	Remarks
	learning	hours	
	methods		
1. Tribometer (description, specifications, destinations, use)	On site	2	Weekly
	presentation		report
2. Ball on disk continuous test for dry, boundary or mixed lubrication	Experimental	2	Weekly
(Stribeck curve)	reading and		report
3. Pin on plate oscillation test for dry, boundary or mixed lubrication	analyse	2	Weekly
			report

			T
4. Block on ring test for boundary or mixed lubrication		2	Weekly
			report
5. Ball on plate oscillation test for static and dynamic friction, stick – slip		2	Weekly
test			report
6. General presentation of laboratory equipment for surface testing:		2	Weekly
ball-on-disk tribometer (CSM Instruments), Compact platform (for			report
micro- and nano-level indentation and scratching).			
7. Wear tests using the pin-on-disk tribometer. Determination of wear		2	Weekly
and friction coefficients under various conditions.			report
8. Testing adhesion of tribological thin-films using the scratch-testing		2	Weekly
method.			report
9. Surfaces topography evaluation at micro and nano levels (mechanic	General	2	Weekly
profilometer method and Atomic Force Microscopy method).	presentation		report
10. Establishing coatings/thin film thickness and adhesion; Ball-cratering	and principle of	2	Weekly
technique and scratch test.	analysis		report
11. The indentation method; establishing the elastic modulus and		2	Weekly
indentation hardness of coatings and thin films.			report
12. Tribology; establishing the dynamic friction coefficient for coatings and]	2	Weekly
thin films using the ball-on-disk tribometer.			report
13. Tribology; establishing the wear rate of coatings and thin films using	1	2	Weekly
Ball-on-disk tribometer and using the profilometer method.			report
14. Deposition of tribological purpose thin films on stainless steel.	1	2	Weekly
			report

Bibliography

- 1. UMT3, Reference manual, 2011
- 2. UMT3, Application manual, 2012
- 3. Bhushan, B., Handbook of Micro/nanotribology, Second edition, CRC Press, LLC, 1999.
- 4. CSM Instruments, Manual of Instrumentation methods, Pesseux, Switzerland, 2011.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

In corroboration with Industrial Companies interests.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade				
10.4 Course	Theory understanding	Crid test, objective evaluation	50%				
10.4 Course	Theory understanding	Grid test, objective evaluation	30 %				
	Correct use of terminology						
10.5 Seminar/ laboratory/	Ability to recognize the	Practical work/oral	50%				
project	phenomena related to	presentation, subjective					
	friction, lubrication and wear	evaluation					
	Efficient communication						
	Correctness of graphical						
	representations and numeric						
	calculus						
	Correct Conclusions						
10.6 Minimal performance standard							

The passing grade for both the course and the laboratory is obtained by demonstrating the ability to identify and define the main processes in tribology (friction, lubrication, wear) and knowledge of the main practical methods used in the tribology laboratory.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof. Ph.D. Eng. Ioan Călin ROȘCA,	Prof. Ph.D. Eng. Mihai DUGULEANĂ
	Head of Department
Dean	
Course holder,	Holder of laboratory,
Prof. dr. ing. Radu VELICU	Prof. dr. ing. Radu VELICU
Course holder,	
Prof. dr. ing. Daniel MUNTEANU	Holder of laboratory,
	Conf. dr. ing. Camelia GABOR

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course		Pra	ctice for research and	devel	opment l			
2.2 Course convenor								
2.3 Seminar/ laboratory/ project		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
convenor								
2.4 Study year	2.4 Study year 1 2.5 Semester		1	2.6 Evaluation type	С	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	12	out of which: 3.2 lecture	0	3.3 seminar/ laboratory/ project	0/0/12
3.4 Total number of hours in	168	out of which: 3.5 lecture	0	3.6 seminar/ laboratory/ project	168
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					
Additional documentation in libraries, specialized electronic platforms, and field research					
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					
Tutorial					
Examinations					
Other activities					

3.7 Total number of hours of student activity			
3.8 Total number per semester	168		
3.9 Number of credits ⁵⁾	4		

4. Prerequisites (if applicable)

4.1 curriculum-related	•	Elementary concepts of automotive engineering, computer-aided design
4.2 competences-related	•	Operating with fundamental concepts of engineering sciences.

5. Conditions (if applicable)

5.1 for course development	projector
	lecture notes
	Windows operating system, Catia V5, Matlab
5.2 for seminar/ laboratory/	projector
project development	laboratory equipped with computers
	Windows operating system, Catia V5, Matlab

6. Specific competences and learning outcomes

- C1. Automobile Construction
 - L.O.1.1 The graduate identifies and explains the basic concepts, theories and methods of the field of automotive engineering and the specialization.
 - L.O.1.2 The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.
 - L.O.1.3 The graduate develops professional projects by selecting, combining, and using concepts, principles, methodologies and technologies from the field.
 - L.O.1.4 The graduate selects and analyzes bibliographic sources specific to the field.
 - L.O.1.5 The graduate demonstrates autonomy in learning on issues specific to the field.
- C2. Conducts scientific research.
 - L.O.2.1 The graduate is able to gather information on current vehicle trends and styles and the need for new products or services.
 - L.O.2.2 The graduate is able to conduct research on current and future developments and design trends, as well as related target market characteristics.
 - L.O.2.3 The graduate is able to prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers keep abreast of recent discoveries.
 - L.O.2.4 The graduate is able to synthesize information, critically interpret and summarize new and complex information from various sources.
 - L.O.2.5 The graduate is able to anticipate changes in automotive technology, monitor and investigate recent technological trends and developments.
 - L.O.2.6 The graduate is able to apply systematic research methods and communicate with relevant parties to find specific information, evaluating research results in terms of relevant estimation of information, as well as related technical systems and their developments.
 - L.O.2.7 The graduate is able to anticipate changes in automotive technology, to monitor and investigate recent technological trends and developments.
 - L.O.2.8 The graduate is able to prepare research documents or give presentations to report the results of a research project carried out, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results.
 - L.O.2.9 The graduate is able to manage data in the field of research.

- Ct1. Self-driving skills and competencies
 - L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
 - L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
 - L.O.1.3 to show initiative, to be proactive,
 - L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
 - L.O.1.5 identify problems and make decisions to solve them;
 - L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
 - L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
- Ct2. Social and communication skills and competencies
 - L.O.2.1 to carry out their work in a team;
 - L.O. 2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to use simple digital tools and technologies to communicate, interact and collaborate with others.
 - L.O.2.4 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	Apply scientific knowledge to solve automotive engineering problems.
objective	
7.2 Specific objectives	Practical skills for simulating the development processes of automotive products.
	Development of programming skills in specific CAD languages.
	Theoretical and applicative knowledge related to multibody systems
	Practical simulation and analysis skills with MB systems software packages
	 Theoretical and applied knowledge related to the modeling and simulation of the physical processes
	 Development of modern software, innovative methods, principles and simulation procedures
	Development of methods for evaluating research and development projects
	Developing a management strategy using modern principles and methods

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Not the case			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Advanced design and simulation in CATIA V5, using	Video projector		
standardized computing, component libraries	presentations, examples,		
Advanced design elements in CATIA V5 software	experiments, case studies		
using appropriate controls	related to multibody	160	
Development of VRML 3D graphics application for	systems, programming in	168	
automotive design	specific CAD languages,		
Virtual prototyping using MB systems	3D graphic programming		
Group projects			
	·	•	•

Bibliography

1. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Brașov,

2016.

2. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universită ii Transilvania Braşov, 2012

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Through its content and through the elaboration of the thematic portfolio (the study), the masters acquire competences in accordance with the expectations of the epistemic community and of the producers in the car market. The analytical program is in line with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage
		methods	of the final grade
10.4 Course			
10.5 Seminar/ laboratory/	Modelling of proposed CAD models	Oral presentation	100%
project	Completion of MBS simulation		
	Involvement in practical activities		
	Efficiency in verbal communication		
	(presentation)		

10.6 Minimal performance standard

- Knowledge of CAD fundamentals
- Realization of an MBD simulation for engineering applications
- Realization of practical project
- The marks for project work must be at least 5.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
Dean	Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);

- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design (in English)

2. Data about the course

2.1 Name of course Advance Simulation in Automotive Design								
2.2 Course convenor Prof.dr.ing. Antonya Csaba								
2.3 Seminar/ laboratory/ project Prof.dr.ing. Antonya Csaba								
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	Ε	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CFC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/0/2
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/0/28
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					70
Additional documentation in libraries, specialized electronic platforms, and field research					75
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					2
Tutorial					2
Examinations					3
Other activities					2

3.7 Total number of hours of student activity		
3.8 Total number per semester		
3.9 Number of credits ⁵⁾	7	

4. Prerequisites (if applicable)

4.1 curriculum-related	Knowledge of Mathematical Analysis, Special Mathematics
4.2 competences-related	Basic knowledge of mechanics

5. Conditions (if applicable)

5.1 for course development	Classroom, video projector
5.2 for seminar/ laboratory/	Laboratory with computers
project development	

- C.2 Competences to carry out scientific research.
 - L.O.2.1 To carry out scientific research, to conceive or create new knowledge by formulating questions in the field by researching, improving or developing concepts, theories, models, techniques, tools, software or operational methods and by using methods and techniques scientific;
 - L.O.2.2 To gather information about current trends and styles regarding vehicles and the need for new products or services;
 - L.O.2.3 To prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers keep up with recent discoveries;
 - L.O.2.4 To prepare research documents or give presentations to report the results of an ongoing research project, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results;
 - L.O.2.5 To synthesize information, critically interpret and summarize new and complex information from various sources;
- C.4 Skills to use CAD-CAM-CAE systems
 - L.O.4.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimization of an industrial drawing or model;
- L.O.4.2 using computer-aided engineering programs to perform stress analyzes for engineering projects. C.5 Ability to design and develop software
 - L.O.5.1 to develop software for motor vehicles and related systems;
 - L.O.5.2 understand and apply the principles of programming and software development technologies in the automotive industry;
 - L.O.5.3 to evaluate and choose suitable platforms, programming languages and software technologies for projects in the automotive industry;
 - L.O.5.4 to develop software applications to improve the functionality, performance and safety of motor vehicles;
 - L.O.5.5 to test and debug software to ensure the proper and safe operation of vehicle systems;
 - L.O.5.6 to integrate software systems in the global architecture of motor vehicles, taking into account security and compatibility aspects;
 - L.O.5.7 manage automotive software development projects, including planning, budgeting and monitoring progress.
- C.6 Skills to use CAD-CAM-CAE systems
 - L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimization of an industrial drawing or model;
 - L.O.6.2 the use of computer-aided manufacturing (CAM) programs to control machines and machine tools in the creation, modification, analysis or optimization processes as part of the manufacturing processes of motor vehicle parts;
 - L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.
- Ct.1 Competences for integration into specific activities at the workplace and technical competencies, in conditions of autonomy and professional independence
 - L.O.1.1 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
 - L.O.1.2 to show initiative, to be proactive,
 - L.O.1.3 to provide advice to colleagues, offering suggestions on the best way forward;
 - L.O.1.4 to be able to work in a team but also independently develop their own ways of doing things, showing the desire to learn,
 - L.O.1.5 to analyze new problems, based on creative, innovative, analytical, and holistic thinking;

- Ct.2 Communication and teamwork skills
 - L.O.2.1 to carry out their work in a team;
 - L.O.2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops, conferences or online events;
- L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

·	T T			
7.1 General course objective	The simulation process refers to performing experiments on models of			
	automotive systems to predict how the real system would behave.			
	Understanding the dynamics of automotive systems and the purpose they			
	serve in designing, analyzing, and controlling them.			
	Conceptualizing how a system is divided into subsystems and components			
	to allow their synthesis.			
7.2 Specific objectives	Synthesis of mathematical models to represent the automotive systems'			
	dynamic responses for analysis, design, and/or control.			
	Analysis of the dynamic characteristics of the automotive systems and their			
	responses to inputs.			
	Methodical system design and synthesis by selecting its parameters to meet			
	the specified criteria.			
	Control by using sensors and actuators to automate a process or system.			
	Bond graph representation: structured graphical representation -			
	establishes rules going from the design of models by phenomenological			
	analysis to equation formatting.			
	Modelling in a non-causal way, allowing focusing on the physical description			
	of the phenomena involved within the automotive systems.			
	Use of specific software programs for modeling, simulation, and control of			
	integrated systems.			

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Introduction to:	The use of classical and	4	
Modeling vs. Simulation	multimedia teaching		
Design, analysis, or control of dynamic systems	techniques (computer,		
State-Space Modeling	video projector)		
Bond Graphs			
Bond Graph Modeling Concepts.	Teaching based on	12	
Basic Bond Graph Elements	significant examples to		
Basic bond graph elements: sources,	provide motivation and		
transformers/gyrators, junctions	explanation of the basic		
Causal bond graphs	concepts and specific		
Examples	methods, highlighting the		
	relevant ideas		
3. Bond Graph Synthesis and Equation		12	
Derivation			
Mathematical modeling of automotive systems			
Algebraic Loops and Derivative Causality			
The state space representation			

Inputs into dynamic systems		
Laplace Transforms		
Transfer Function		
Impedance Bond Graphs		
Time domain analysis		
Frequency domain analysis		

Bibliography

Mellodge, Patricia: A Practical Approach to Dynamical Systems for Engineers. Woodhead Publishing, 2016 Javier A. Kypuros: System Dynamics and Control with Bond Graph Modeling. CRC Press, 2013

Dean C. Karnopp, Donald L. Margolis, Ronald C. Rosenberg: System Dynamics Modeling, Simulation, and Control of Mechatronic Systems. John Wiley & Sons, 2012

Claudiu Pozna: Teoria sistemelor automate, Matrixrom, 2010

Antonya, Cs., Boboc, R.G., Mechanisms: theory and examples. Transilvania University Press, Brasov, 2023.

François E. Cellier, Ernesto Kofman: Continuous System Simulation, Springer, 2006

Wolfgang Borutzky: Bond Graph Modelling of Engineering Systems, Springer, 2011

Antonya, Cs.: Simularea grafică a sistemelor de corpuri. Transilvania University Press, Brașov, 2004

8.2 Seminar/ laboratory/ project		Teaching-learning	Number of hours	Remarks
		methods		
Proje	ct:	Experimental activity on	28	
1.	Theoretical Subject	system dynamics		
		developed with Siemens		
Write	a report of 4-5 pages about the topic from	AMESim or		
the fo	ollowing list:	Matlab/Simscape.		
1.	Bond graph modeling concepts	Explanations, examples,		
2.	Bond graph elements: mechanical –	interactivity, case studies		
trans	lational			
3.	Bond graph elements: mechanical –			
rotat	on			
4.	Bond graph elements: electrical circuits			
5.	Bond graph elements: flow system			
6.	Bond graph elements: sources,			
trans	formers/gyrators, junctions			
7.	Causal bond graphs			
8.	Bond graph synthesis and equation			
deriv	ation			
9.	The state space representation			
10.	Laplace transforms, solving for the system			
respo	inse			
11.	Impedance bond graphs			
12.	Time domain analysis			
13.	Frequency domain analysis			
2.	Practical subject			
Simu	ation in AMESIM or Matlab/Simscape model			
of an	automotive application			
Write	a report about the model with:			
	Model description			
	Simulation premises			

Initial conditions		
Components,		
Building the model		
Results, interpretation of results		

Bibliography

Mellodge, Patricia: A Practical Approach to Dynamical Systems for Engineers. Woodhead Publishing, 2016 Javier A. Kypuros: System Dynamics and Control with Bond Graph Modeling. CRC Press, 2013

Dean C. Karnopp, Donald L. Margolis, Ronald C. Rosenberg: System Dynamics Modeling, Simulation, and Control of Mechatronic Systems. John Wiley & Sons, 2012

Claudiu Pozna: Teoria sistemelor automate, Matrixrom, 2010

Antonya, Cs., Boboc, R.G., Mechanisms: theory and examples. Transilvania University Press, Brasov, 2023.

François E. Cellier, Ernesto Kofman: Continuous System Simulation, Springer, 2006

Wolfgang Borutzky: Bond Graph Modelling of Engineering Systems, Springer, 2011

Antonya, Cs., Simularea grafică a sistemelor de corpuri. Transilvania University Press, Braşov, 2004

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Studying theoretical subjects and applications ensures the formation of skills related to the integrated design of vehicle systems and understanding the interaction of mechanical systems with electrical/electronic control systems, respectively with hydraulic, pneumatic, thermal systems, etc. These skills are needed in the design and analysis of modern vehicles. Completing the course involves knowing and using software tools for designing modern mechanical systems in an integrated and optimal approach.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Course	Using basic knowledge to explain and interpret algorithms for multibody systems	Oral examination	33%
10.5 Seminar/ laboratory/ project	According to the project subject (theoretical and simulation)	Presentation	67%

10.6 Minimal performance standard

- Use basic knowledge to explain and interpret the vehicle's dynamic systems.
- Elaboration of a project with an imposed theme,
- The grades obtained for the imposed subject, project, and exam must be at least 5.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. loan Călin ROȘCA, Prof.dr.ing. Mihai DUGULEANĂ,	
Dean Head of Department	

Prof.dr.ing. Csaba ANTONYA,	Prof.dr.ing. Csaba ANTONYA,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course Sin		Sim	ulation in product dev	elopr	nent			
2.2 Course convenor		Pro	Prof.dr.ing. BUTNARIU Silviu					
2.3 Seminar/ laboratory/ project		Pro	f.dr.ing. BUTNARIU Silv	viu				
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	V	2.7 Course	Content ³⁾	DS
						status	Attendance type ⁴⁾	DI

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	0/0/1
3.4 Total number of hours in	28	out of which: 3.5 lecture	14	3.6 seminar/ laboratory/ project	0/0/14
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes			32		
Additional documentation in libraries, specialized electronic platforms, and field research			28		
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays			28		
Tutorial			2		
Examinations			2		
Other activities					

3.7 Total number of hours of student activity	
3.8 Total number per semester	
3.9 Number of credits ⁵⁾	4

4. Prerequisites (if applicable)

4.1 curriculum-	Engineering disciplines studied in the undergraduate years
related	
4.2 competences-	Basic engineering concepts
related	

5. Conditions (if applicable)

5.1 for course development	classroom, projector
5.2 for seminar/ laboratory/	computer room.
project development	

6. Specific competences and learning outcomes

	C.1 Skills for identifying needs for design
	L.O.1.1 To identify customer needs;
	L.O.1.2 To interpret the technical requirements of customers, analyzing, understanding and applying the
	information provided regarding the technical conditions;
	L.O.1.3 To define technical design requirements,
	C.6 Skills to use CAD-CAM-CAE systems
	L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
	analysis and optimization of an industrial drawing or model;
	L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.
	C.7 Competences for the development of vehicle manufacturing and assembly technologies, test and
	validation procedures for vehicle components, systems and equipment
	L.O. 7.2 evaluation of advanced vehicle manufacturing technologies and their correlation with the optimal
es	operating parameters of vehicle systems;
enc	L.O.7.6 development of test and validation protocols to enable a variety of analyzes of vehicle
pet	components and systems;
LO:	L.O.7.8 identifying problems that may arise and finding optimal solutions;
ופר	R.Î.7.10 evaluating the possibility that a system or its components can be obtained by applying certain
Sion	engineering principles.
Professional competences	C.8 The ability to improve safety and comply with technical equipment safety standards
P	L.O.8.2 combine mechanical, electrical, electronic, software and safety engineering for vehicle design.
	CT.1 Competences for integration into specific activities at the workplace and technical competences, in
	conditions of autonomy and professional independence
	L.O.1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make
	decisions choosing from several alternative possibilities;
	L.O.1.6 to be able to work in a team but also independently, developing their own ways of doing things,
	showing the desire to learn,
	L.O.1.7 to analyze new problems, based on creative, innovative, analytical, holistic thinking;
δi	L.O. 1.9 apply scientific, technological and engineering knowledge, processing complex information,
inces	operating technological installations, tools or digital equipment;
oete	L.O.1.13 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
d wo	CT.2 Communication and teamwork skills
a C	L.O.2.2 to address an audience, give a speech, make a presentation;
/ers	L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops,
Transversal compete	conferences or online events;
고	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	Theoretical and applied training in the design and development of products in the field of motor					
objective	vehicles					
7.2 Specific	Understanding product development strategies					
objectives	Understanding of product design methods and processes					
	Understanding and practicing simulation in product development					

8. Content

8.1 Course	Teaching methods	Number	Remarks
		of hours	
Trends in the automotive industry. Life cycle assessment	Interactive course,	2	
Product development in the automotive industry. Introduction	exposure to	2	

(background, methods, history)	multimedia		
Life cycle of automotive products		2	
Product development process models. Simulation in product		4	
development			
Project management in product development		2	
How product development simulation adds value to the product		2	
development process			

Bibliography

Rafinjad, D. R. Innovation, product development and Commercialization, 2007

Munch, J., a o , Software process definition and Management, Springer, 2012

Karniel, A., Reich Y., Managing the Dynamics of the New Product Development Process, Springer, 2011.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number	Remarks
	methods	of hours	
Product development processes for	Individual and group	6	
public transport systems: case studies of electromobility systems;	work, assisted		
infrastructure; monitoring; efficiency; innovation process, research	training		
activities.			
Product Development Simulation Case Studies: Global Customer	Individual and group	8	
Demands: Model Supported Design vs Traditional Design; model	work, assisted		
validation; virtual model verification, applications on automotive	training		
engine subassemblies			

Bibliography

Rafinjad, D. R. Innovation, product development and Commercialization, 2007

Munch, J., a o , Software process definition and Management, Springer, 2012

Karniel, A., Reich Y., Managing the Dynamics of the New Product Development Process, Springer, 2011.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of the discipline was discussed with the professors of the department and with the representatives of the Schaeffler Romania company

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Ability to identify, formulate and solve	Knowledge verification to support	50
	engineering problems	the project	
10.5 Seminar/	Correctness of schemes and calculations	Project analysis	30
laboratory/	and conclusions		
project	The originality of the presentation.	Powerpoint presentation	20
40.6 M; ;] (•	•

10.6 Minimal performance standard

- Grade 5 on the project
- Score 5 on the knowledge test

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA	Prof.dr.ing. Mihai DUGULEANĂ
Dean of Faculty of Mechanical Engineering	Head of Department
Prof.dr.ing. Silviu BUTNARIU	dr.ing. Eugen BUTILĂ
Course holder	Holder of laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Finite element analysis in automotive design (FEA)					
2.2 Course convenor			Pro	Prof.dr.ing. BUTNARIU Silviu				
2.3 Seminar/ laboratory/ project			dr.ir	ng. BUTILĂ Eugen				
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	Ε	2.7 Course	Content ³⁾	DAP
						status	Attendance type ⁴⁾	DI

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week 4		out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/1/1
3.4 Total number of hours in 56		out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/14/1
the curriculum					4
Time allocation					hours
Study of textbooks, course support, bibliography and notes					45
Additional documentation in libraries, specialized electronic platforms, and field research					40
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					28
Tutorial					8
Examinations					3
Other activities					

3.7 Total number of hours of student activity		
3.8 Total number per semester	180	
3.9 Number of credits ⁵⁾	6	

4. Prerequisites (if applicable)

ii i rerequisites (ii up	r						
4.1 curriculum-	General concepts of physics, mechanics, strength of materials. Mathematical disciplines and						
related	engineering disciplines (machine parts, material resistance, mechanics, mechanisms), studied						
	in the undergraduate years						
4.2 competences-	Knowledge and understanding:						
related	familiarize students with the concepts and terminology of the discipline, with reference to						
	mechanical systems and processes in the field of automotive engineering study.						
	understanding the reasoning used and how the investigation;						
	understanding criteria for choice and use of methods of investigation.						
	Explanation and interpretation:						
	explain the concepts used in finite element analysis and interpretation of analysis results of						
	tension and strain generated in different application situations;						
	Instrumental – Applied						

- to selection of the concepts and proper investigation methods, recognizing how best to resolve the problem subject to study;
- proper use of specific calculation processes theory finite element discretization of a correct interpretation of results, proper use of the automatic calculation program for.

Attitude

- evidence of positive and responsible attitudes towards science based on knowledge of phenomena and connections with engineering practice;
- fostering scientific environment centered democratic values and relationships;
- making best use of their potential in creative and scientific activities;
- engaging in a partnership relationship with other people: colleagues, teachers, etc. participation in their scientific development.

5. Conditions (if applicable)

5.1 for course development	classroom, projector
5.2 for seminar/ laboratory/	computer room, dedicated software (ANSYS), machine elements.
project development	

6. Specific competences and learning outcomes

C.2 Competences to design systems, equipment and vehicle components

L.O.2.3 applying mathematical methods and using calculation and simulation programs to perform technical analyzes and design solutions for specific problems;

L.O.2.5 designing prototypes of vehicle components and systems by applying advanced engineering principles;

L.O.2.6 preparation of functional models, prototypes in order to test concepts and reproduction possibilities; creating prototypes for pre-production test evaluation;

L.O.2.7 development of test protocols for vehicle components and equipment;

C.4 Competences to carry out scientific research.

L.O 4.3 To prepare reports that describe the results and processes of scientific or technical research or evaluate its progress.

L.O.4.4 To prepare research documents or give presentations to report the results of an ongoing research project, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results;

L.O.4.9 To synthesize information, critically interpret and summarize new and complex information from various sources;

C.6 Skills to use CAD-CAM-CAE systems

L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimization of an industrial drawing or model;

L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.

Transversal competences

- CT.1 Competences for integration into specific activities at the workplace and technical competences, in conditions of autonomy and professional independence
 - L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
 - L.O.1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
 - L.O.1.13 to plan activities, manage the calendar and resources to complete tasks in a timely manner.

CT.2 Communication and teamwork skills

- L.O.2.2 to address an audience, give a speech, make a presentation;
- L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops, conferences or online events;
- L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course	The study of the Finite Element Method discipline has as its general objective the acquisition of				
objective	knowledge and the acquisition of the skills necessary for professional development in the				
	environment of industrial codes and, in particular, to form the skills necessary for the design and				
	computer-assisted manufacturing activities of specific engineering milestones				
7.2 Specific	In this course, the fundamental aspects of the finite element method are first presented, then				
objectives	the student becomes familiar with the use of basic tools for finite element modelling and				
	analysis, applied in the real situation of some engineering problems. The educational purpose of				
	the course aims at the following objectives:				
	Knowledge and appropriate use of the concepts with which the discipline operates:				
	finite element, model with finite elements, elementary stiffness matrix, global				
	stiffness matrix, boundary conditions, processing, post-processing, etc.;				
	 Understanding the principles of modelling resistance structures and their elements, 				
	as well as developing the skills of correct application of this knowledge;				
	Carrying out pertinent analyses regarding the schematization level accepted when				
	developing a model with finite elements in structural mechanics problems;				
	The correct interpretation of the results and the formulation of conclusions based				
	on the results obtained following the analysis on models with finite elements;				

8. Content

8.1	Course	Teaching methods	Number	Remarks
			of hours	
1.	The finite element method: The principle of the finite element	Interactive course,	4	
	method, the steps to solve a problem using the finite element	exposure to		
	method, shape functions, general considerations on the choice	multimedia, heuristic		
	of elemental elements, meshing domain analysis for	conversation,		
	continuous structures, obtaining finite element numerical	explanation,		
	model.	demonstration		
2.	One-dimensional problems		2	
3.	Multidimensional problems		2	
4.	Calculation methods of engineering structures. Using finite		2	
	element method in engineering. Physical and Engineering			
	Opportunities limits.			
5.	Basis of the theory of elasticity: tension, displacement fields		4	

	and strain states;		
6.	Laws of behavior / criteria limits of elasticity: Tresca criterion,	4	
	Von Mises criterion.		
7.	Mechanical Fundamentals of finite element method. Balance	2	
	equations. Laws of behaviour. Approximation by finite		
	elements. The finite element method in elasticity, led by		
	displacement calculation, deformation tensor, vector efforts,		
	the element stiffness matrix.		
8.	Types of finite elements and criteria of their choice. Practical	4	
	problems using the finite element method. Influence of mesh,		
	test case.		
9.	Case study for a bar subjected to bending.	2	
10.	Steps for the finite element analysis and the flowchart for	2	
	solving process. Interpretation of finite element analysis		
	results.		

Bibliography

Butnariu, S., Mogan, Gh., Analiza cu elemente finite în ingineria mecanică. Aplicatii practice in ANSYS, Ed. Universită ii Transilvania, ISBN 978-606-19-0474-7 (print), 2014

8.2 Seminar/ laboratory/ project	Teaching-learning	Number	Remarks
	methods	of hours	
1. Description the possibilities and the performances calculation	Learning through	2	14 case
used programs.	problem /		studies –
2. Analysed the structure geometry modelling: Defining mesh	explanation,	3	tutorials from
parameters. Choice of finite element. Discretization.	demonstration, case		references
3. Physical and mechanical modelling: Defining material. Defining	study, conducting	3	
and declaring links. Defining external actions - forces and	guided and		
moments - and load situations.	independent		
4. Finite element analysis: static calculation, calculation of dynamic	applications.	3	
5. Finite element analysis results. Interpretation and exploitation.		1	
6. Assessment of laboratory activity and project evaluation		2	
7. Project – finite element analysis of an element / assembly	Solving a case study	14	

Bibliography

Butnariu, S., Mogan, Gh., Analiza cu elemente finite în ingineria mecanică. Aplicatii practice in ANSYS, Ed. Universității Transilvania, ISBN 978-606-19-0474-7 (print), 2014

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Finite element analysis software applications offer a wide range of solutions in industry, for example in civil construction infrastructure: power plants, bridges, roads, railways, structures, and water systems. Benefits include: greater confidence in the structural integrity of the design when considering multiple innovative construction methods and materials, rapid evaluation of trade studies, configuration changes, concept drawings, side-by-side evaluation of the overall structure, with details key within the structure, as well as the ability to cope with all types of loading environments.

A large proportion of representative employers recognize that modeling and simulation, including finite element analysis (FEA) and computer-aided design (CAD), are valuable tools in vehicle development to optimize design and minimize risk. Using simulation tools including ADAMS, MATLAB, as well as finite element analysis, these companies provide rapid design coupled with corrective action.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Ability to apply knowledge of mathematics, science and engineering. Ability to identify, formulate and solve engineering problems	Testing theoretical and practical knowledge by carrying out a complex project - case study	50
10.5 Seminar/ laboratory/ project	Ability to complete, follow and complete case studies solvable through MEF based on tutorials.	Studying and solving laboratory work	15
	Ability to use modern engineering techniques, skills and tools required for engineering practices; case study.	Practical test - solving exercises	35

10.6 Minimal performance standard

Minimum requirements for grade 5: for all evaluation activities, at least half of the points awarded, respectively
minimum grade 5, must be obtained. The minimum performance standards are given by understanding the
introductory concepts taught in each topic, making the connection between concepts, the correct approach to the
applications and calculation dexterity

This course outline was certified in the Department Board meeting on 20/092024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.ing. Ioan Călin ROȘCA	Prof.dr.ing. Mihai DUGULEANĂ
Dean of Faculty of Mechanical Engineering	Head of Department
Prof.dr.ing. Silviu BUTNARIU	dr.ing. Eugen BUTILĂ
Course holder	Holder of laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	.1 Name of course Virtual and augmented reality in automotive design and maintenance							
2.2 Course convenor		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
2.3 Seminar/ laboratory/ project		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
convenor								
2.4 Study year	1	2.5 Semester	2 2.6 Evaluation type E 2.7 Course Content ³⁾			PC		
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	3	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	0/1/1
3.4 Total number of hours in	42	out of which: 3.5 lecture	14	3.6 seminar/ laboratory/ project	0/14/1
the curriculum					4
Time allocation					hours
Study of textbooks, course support, bibliography and notes				25	
Additional documentation in libraries, specialized electronic platforms, and field research					35
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays				52	
Tutorial				22	
Examinations				2	
Other activities				2	

3.7 Total number of hours of student activity	
3.8 Total number per semester	180
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	Knowledge of 3D Modelling, 3D Graphics Programming
4.2 competences-related	Operating with fundamental concepts of engineering sciences.

5. Conditions (if applicable)

5.1 for course development	• projector
	lecture notes
	recommended bibliography
5.2 for seminar/ laboratory/	projector
project development	laboratory equipped with computers
	virtual and augmented reality equipments
	lecture notes
	recommended bibliography

6. Specific competences and learning outcomes

- Cp1 Design the user interface
 - L.O.1.1 The graduate has in-depth knowledge of the principles of Human-Computer Interaction (HCI) and ergonomics: HCI models and theories (conceptual, cognitive and perceptual models that underlie human interaction with technology), UI/UX design principles (Deep knowledge of the principles of usability (ease of use), user experience (user experience), accessibility and consistency in interface design), cognitive and physical ergonomics.
 - L.O.1.2 The graduate has the ability to analyze the requirements and project specification.
 - L.O.1.3 The graduate has the ability to design information architecture, user flows, wireframes and prototypes of intuitive and efficient interfaces.
 - L.O.1.4 The graduate has the ability to integrate software components with hardware specific to systems or machines (e.g. sensors, actuators, displays, buttons), using appropriate drivers and APIs.
 - L.O.1.5 The graduate assumes full responsibility for the quality, performance and security of the developed interface components.
 - L.O.1.6 The graduate has the ability to adapt quickly to new requirements, technologies or changes in project specifications.
 - L.O.1.7 The graduate demonstrates initiative in exploring and implementing innovative solutions to improve human-system/machine interaction.
- Cp2. Design and execute the virtual model of a product
 - L.O.2.1 The graduate will demonstrate in-depth knowledge of the fundamental principles of computational geometry and the mathematical representation of three-dimensional shapes, the differences and applications of wireframe, surface and solid models, as well as the concepts of parametric and direct modeling.
 - L.O.2.2 The graduate has the ability to fluently use CAE/CAD software to create 3D models: This includes modeling complex parts, assemblies, generating technical drawings and applying geometric constraints and relationships.
 - L.O.2.3 The graduate has the ability to optimize product design based on simulation results to improve the performance, reliability or efficiency of an automotive component or system.
 - L.O.2.4 The graduate has the ability to integrate various software tools and manage data transfer between them.
 - L.O.2.5 The graduate will demonstrate autonomy in choosing appropriate modeling tools and methods.
 - L.O.2.6 The graduate will demonstrate a proactive attitude in solving problems, by identifying and addressing technical challenges related to modeling and simulation, seeking innovative and effective solutions.
- Cp3. Uses application-specific interfaces
 - L.O.3.1 The graduate can evaluate and choose platforms, programming languages, and software technologies suitable for automotive industry projects.
 - L.O.3.2 The graduate has the ability to understand and apply the principles of programming and software development technologies in the automotive industry.
 - L.O.3.3 The graduate has the ability to manage automotive software development projects, including planning, budgeting, and monitoring progress.

- Ct1. Self-driving skills and competencies
 - L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
 - L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
 - L.O.1.3 to show initiative, to be proactive,
 - L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
 - L.O.1.5 identify problems and make decisions to solve them;
 - L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
 - L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
- Ct2. Social and communication skills and competencies
 - L.O.2.1 to carry out their work in a team;
 - L.O. 2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to use simple digital tools and technologies to communicate, interact and collaborate with others.
 - L.O.2.4 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Understanding the principles and potential for automotive design of Virtual
	Reality (VR) and Augmented Reality (AR) techniques and technologies.
	Understand and gain basic knowledge required to develop applications for
	3D simulation of automotive based on VR technology.
7.2 Specific objectives	Learning of knowledge for creating interactive 3D virtual environments
	required in automotive design;
	Learning knowledge for development of RV / RA software;
	Acquisition of practical skills for automotive design applications through the
	use of RV / RA technologies and programming environments.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Introduction. The aim of the course. Introduction to	Interactive lecture	2 hours	
human-computer interaction. Terminology,			
definitions and characteristics of virtual reality.			
Terminology, definitions and characteristics of			
augmented reality. Available technologies for			
virtual reality and augmented. History of virtual and			
augmented reality.			
Software systems and standards for virtual and	Interactive lecture	2 hours	
augmented reality: Unity, InstantReality, ARCore			
Virtual and augmented reality hardware:	Interactive lecture	2 hours	
technology and stereoscopic 3D visualization			
systems, haptic and audio systems			
Virtual and augmented reality hardware: 3D input	Interactive lecture	2 hours	
devices for virtual reality: tracking systems, voice			
commands, gloves, brain-computer interfaces.			
3D interaction techniques for virtual and	Interactive lecture	2 hours	

augmented reality.			
Designing RV/RA user interfaces and applications	Interactive lecture	4 hours	

Bibliography

- 1. Gîrbacia Florin, Duguleană Mihai (2019): Virtual and augmented reality in automotive design and maintenance: course notes, Editura Universitatii Transilvania din Brasov, ISBN 978-606-19-1124-0.
- 2. Gîrbacia F. (2016): Tehnologii de Realitate Virtuală și Augmentată Aplicate în Inginerie. Note de curs", Editura Universitatii Tranilvania din Brasov, ISBN 978-606-19-0784-7.
- 3. Talabă, D., Amditis, A. Product Engineering, Tools and Methods Based on Virtual Reality. Editura Springer, 2007.
- 4. Gîrbacia, F. Talabă, D., Tehnologiile realității virtuale:lucrări practice, Editura Universității Transilvania Braşov, 2012.
- 5. Girbacia, F. Cercetari teoretice si experimentale privind dezvoltarea de interfete multimodale de realitate virtuala pentru aplicatii de proiectare asistata de calculator, Teza de doctorat, Universitatea Transilvania Brasov, 2007.
- 6. Vince J., Realitate Virtuala, Editura Tehnica, Bucuresti, 2000.
- 7. Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, Ivan Poupyrev, "3D User Interfaces: Theory and Practice", Addison-Wesley/Pearson Education, 2005,ISBN 0-201-75867-9.
- 8. Burdea, G. Virtual Reality Technology, Ed. John Wiley&Sons, 2003.

Thalman, D. Stepping into Virtual Reality, Ed. Springer, 2008.

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number of hours	Remarks
Geometric modeling of 3D virtual environments for	Interactive lecture,	2 hours	
automotive design applications.	exercises and examples,		
	individual work		
Techniques and principles for developing virtual	Interactive lecture,	4 hours	
reality applications using Unity	exercises and examples,		
	individual work		
Techniques and principles for developing	Interactive lecture,	4 hours	
applications using the, Unity, Instant Reality and	exercises and examples,		
ArCore SDK Augmented Reality libraries	individual work		
Development of 3D stereoscopic passive / active	Interactive lecture,	4 hours	
visualization automotive design applications.	exercises and examples,		
	individual work		
Navigation and interaction in virtual three-	Interactive lecture,	2 hours	
dimensional VRML scenes using 3D mouse and	exercises and examples,		
joystick	individual work		
Designing a with 1 DOF haptic device for an	Individual work	6 hours	
automotive part design haptic prototyping			
Development of a Augmented Reality Application	Individual work	6 hours	
for automotive maintenance interactive			
instructions			

Bibliography

- 1. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.
- 2. Gîrbacia Florin, Duguleană Mihai (2019): Virtual and augmented reality in automotive design and maintenance: course notes, Editura Universitatii Transilvania din Brasov, ISBN 978-606-19-1124-0.
- 3. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universită ii Transilvania Brașov,

2012.

- 4. Gîrbacia F. (2016): Tehnologii de Realitate Virtuală și Augmentată Aplicate în Inginerie. Note de curs", Editura Universitatii Tranilvania din Brasov, ISBN 978-606-19-0784-7.
- 9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Cunoştin ele teoretice și practice fundamentează cele mai noi abordări ale tehnologiilor de Realitate Virtuală și Augmentată pentru domeniul proiectării autovehiculelor. Programa analitică este în concordan ă cu domeniile similare abordate la universități din țară și din străinătate.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Course	Ability to configure virtual reality systems for engineering	Written exam	40%
10.5 Seminar/ laboratory/ project	Ability to use modern virtual reality techniques and technologies	Solving practical applications	60%

10.6 Minimal performance standard

- Knowledge of the fundamentals of VR/RA technologies
- Development of an RV/RA application for automotive engineering
- The grades obtained for the project and exam activity must be at least 5

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. loan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
Dean	Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;

- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course		Practice for research and development I						
2.2 Course conve	nor							
2.3 Seminar/ lab	orato	ry/ project	Pro	f. Ph. D. eng. Florin GÎF	RBAC	Α		
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	С	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	12	out of which: 3.2 lecture	0	3.3 seminar/ laboratory/ project	0/0/12
3.4 Total number of hours in	168	out of which: 3.5 lecture	0	3.6 seminar/ laboratory/ project	168
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					
Additional documentation in libraries, specialized electronic platforms, and field research					
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					
Tutorial					
Examinations					
Other activities					

3.7 Total number of hours of student activity	
3.8 Total number per semester	168
3.9 Number of credits ⁵⁾	4

4. Prerequisites (if applicable)

4.1 curriculum-related	Elementary concepts of automotive engineering, computer-aided design
4.2 competences-related	Operating with fundamental concepts of engineering sciences.

5. Conditions (if applicable)

5.1 for course development	•	projector
5.2 for seminar/ laboratory/	•	projector
project development	•	laboratory equipped with computers
	•	Windows operating system, Unity 3D, Ansys

6. Specific competences and learning outcomes

Professional competences

C1. Automobile Construction

- L.O.1.1 The graduate identifies and explains the basic concepts, theories and methods of the field of automotive engineering and the specialization.
- L.O.1.2 The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.
- L.O.1.3 The graduate develops professional projects by selecting, combining, and using concepts, principles, methodologies and technologies from the field.
- L.O.1.4 The graduate selects and analyzes bibliographic sources specific to the field.
- L.O.1.5 The graduate demonstrates autonomy in learning on issues specific to the field.

C2. Conducts scientific research.

- L.O.2.1 The graduate is able to gather information on current vehicle trends and styles and the need for new products or services.
- L.O.2.2 The graduate is able to conduct research on current and future developments and design trends, as well as related target market characteristics.
- L.O.2.3 The graduate is able to prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers keep abreast of recent discoveries.
- L.O.2.4 The graduate is able to synthesize information, critically interpret and summarize new and complex information from various sources.
- L.O.2.5 The graduate is able to anticipate changes in automotive technology, monitor and investigate recent technological trends and developments.
- L.O.2.6 The graduate is able to apply systematic research methods and communicate with relevant parties to find specific information, evaluating research results in terms of relevant estimation of information, as well as related technical systems and their developments.
- L.O.2.7 The graduate is able to anticipate changes in automotive technology, to monitor and investigate recent technological trends and developments.
- L.O.2.8 The graduate is able to prepare research documents or give presentations to report the results of a research project carried out, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results.
- L.O.2.9 The graduate is able to manage data in the field of research.

Ct1. Self-driving skills and competencies

- L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
- L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
- L.O.1.3 to show initiative, to be proactive,
- L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
- L.O.1.5 identify problems and make decisions to solve them;
- L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
- L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.

Ct2. Social and communication skills and competencies

- L.O.2.1 to carry out their work in a team;
- L.O. 2.2 to address an audience, give a speech, make a presentation;
- L.O.2.3 to use simple digital tools and technologies to communicate, interact and collaborate with others.
- L.O.2.4 to create and maintain networks, promoting ideas, products and services.

Transversal competences

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Apply scientific knowledge to solve automotive engineering problems.
7.2 Specific objectives	 Practical skills for operating and use the RV hard-software systems. Practical skills for simulating the development processes of automotive products. Practical skills of advanced simulation in the design of vehicles Theoretical and applied knowledge related to the modeling and simulation of the physical processes Development of modern software, innovative methods, principles and simulation procedures Development of methods for evaluating research and development projects
	Developing a management strategy using modern principles and methods

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Not the case			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Development of a passive / active 3D stereoscopic	Video projector		
visualization application related to automotive	presentations, examples,		
design	experiments, case studies		
Developed RV / RA application for maintenance of	related to multibody		
autovehicles	systems, programming in	168	
Performing a finite element analysis in Ansys of a	specific CAD languages,		
vehicle component	3D graphic programming		
Group projects			

Bibliography

- 1. Gîrbacia Florin –"Tehnologii de realitate virtuală pentru proiectarea asistată de calculator", Editura Universitatii Transilvania, 2019. ISBN 978-606-19-1123-3
- 2. Gîrbacia Florin, Duguleană Mihai "Virtual and augmented reality in automotive design and maintenance: course notes", Editura Universitatii Transilvania din Brasov, 2019. ISBN 978-606-19-1124-0
- 3. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.
- 4. Gîrbacia, F., Talabă, D., Tehnologiile realității virtuale:lucrări practice, Ed. Universită ii Transilvania Braşov, 2012.
- 5. Gîrbacia F. (2016): Tehnologii de Realitate Virtuală și Augmentată Aplicate în Inginerie. Note de curs", Editura Universitatii Tranilvania din Brasov, ISBN 978-606-19-0784-7.
- 6. Butnariu, S., Mogan, Gh., Analiza cu elemente finite în ingineria mecanică. Aplicatii practice in ANSYS, Ed. Universită ii Transilvania, ISBN 978-606-19-0474-7 (print), 2014

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Through its content and through the elaboration of the thematic portfolio (the study), the masters acquire competences in accordance with the expectations of the epistemic community and of the producers in the car market. The analytical program is in line with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Course			
10.5 Seminar/ laboratory/	RV application development	Oral presentation	100%
project	FEM simulation completion		
	Involvement in practical		
	activities		
	Efficiency in verbal		
	communication		
	(presentation)		

10.6 Minimal performance standard

- Knowledge of CAD fundamentals
- Realization of an MBD simulation for engineering applications
- Realization of practical project
- The marks for project work must be at least 5.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
Dean	Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);

- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

A. COURSE OUTLINE

1. Program data

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Motor vehicles and transport
1.4 Master's field of study 1)	Automotive Engineering
1.5 Cycle of studies ²⁾	Masters
B. 1.6 Curriculum/Qualification	Virtual Engineering in Automotive Design / Master's Degree

2. Discipline data

2.1 Name of the discipline	Advanced med	chani	cal trar	smissions i	n automot	tive engineering	S	
2.2 Course Activity Holder				Conf.dr.ing. Dragoș Sorin Dima				
2.3 Owner of project activities				Conf dr.in	g. Dragoș	Sorin Dima		
2.4 Year of study 1	2.5 Semester	2	2.6 Ty	/pe of	V	2.7	Content3)	DAP
			asses	sment		Discipline	Obligation4)	DO
						regime		

3. Total estimated time (hours per semester of teaching activities)

				1	
3.1 Number of hours per week	2	of which: 3.2	1	3.3 Seminar/ Laboratory/	0/0/1
		course		Project	
3.4 Total hours of the curriculum	28	of which: 3.5	14	3.6 Seminar/ Laboratory/	0/0/14
		course		Project	
Time Pool Distribution					hours
Study by textbook, course material, bibliography and notes					15
Additional documentation in the library, on specialized electronic platforms and in the field					15
Preparation of seminars/laboratories/projects, assignments, papers, portfolios and essays				28	
Tutoriat				2	
Examination					2
Other activities					

3.7 Total hours of student activity	62
3.8 Total hours per semester	90
3.9 Number of credits5)	3

4. Preconditions (where applicable)

4.1 curriculum -	General concepts of physics, mechanics, strength of materials. Mathematical disciplines and			
related	engineering disciplines (machine parts, material resistance, mechanics, mechanisms), studied			
	in the undergraduate years			
4.2 Competences	Knowledge and understanding:			
	familiarize students with the concepts and terminology of the discipline, with			
	reference to mechanical systems and processes in the field of automotive engineering			
	study.			
	understanding the reasoning used and how the investigation;			
	understanding criteria for choice and use of methods of investigation.			
	Explanation and interpretation:			
	explain the concepts used in finite element analysis and interpretation of analysis			
	results of tension and strain generated in different application situations;			

Instrumental – Applied

- to selection of the concepts and proper investigation methods, recognizing how best to resolve the problem subject to study;
- proper use of specific calculation processes theory finite element discretization of a correct interpretation of results, proper use of the automatic calculation program for.

Attitude

- evidence of positive and responsible attitudes towards science based on knowledge of phenomena and connections with engineering practice;
- fostering scientific environment centered democratic values and relationships;
- making best use of their potential in creative and scientific activities;
- engaging in a partnership relationship with other people: colleagues, teachers, etc.
 participation in their scientific development.

5. Conditions (where applicable)

5.1 for course development	classroom, projector
5.2 for seminar/ laboratory/	computer room, dedicated software (ANSYS), machine elements.
project	

6. Specific competences and learning outcomes

CP2. Skills in the design of systems, equipment and components of motor vehicles

- L.O.2.1 the ability to study, interpret and capitalize on the technical resources specific to the automotive manufacturing industry;
- L.O.2.2 the use of advanced concepts, techniques and principles for the design of modern automotive systems and equipment;
- L.O.2.3 the application of mathematical methods and the use of calculation and simulation programs to perform technical analyses and design solutions for specific problems;
- L.O.2.5 Prototype design of automotive components and systems by applying advanced engineering principles;

CP4 Competences to carry out scientific research

- L.O.4.1 To conduct scientific research, to conceive or create new knowledge by formulating questions in the field by researching, improving or developing concepts, theories, models, techniques, tools, software or operational methods and by using scientific methods and techniques;
- L.O.4.2 Gather information about current vehicle trends and styles and the need for new products or services;
- L.O.4.3 Prepare reports describing the results and processes of scientific or technical research or assessing its progress. These reports help researchers keep up with recent findings;
- L.O.4.4 Develop research papers or give presentations to report the results of a research project, indicating the analysis procedures and methods that led to those results, as well as possible interpretations of the results;
- L.O.4.5 Conduct research on present and future developments and trends in design, as well as related target market characteristics;
- L.O.4.6 Anticipate changes in automotive technology, supervise and investigate recent technological trends and developments;
- L.O.4.7 Manage research data;

- L.O.4.9 Synthesize information, interpret and critically summarize new and complex information from various sources;
- L.O.4.10 Interact professionally in research and professional environments;
- L.O.4.11 Apply systematic research methods and communicate with relevant parties to find specific information, evaluating research results with a view to relevant estimation of the information, as well as related technical systems and their developments;
- L.O.4.12 Demonstrate in-depth knowledge and complex understanding of the field of research, including responsible research, ethical principles and scientific integrity in research, respect for privacy and GDPR requirements, related to research activities in a particular discipline.

CP.6 Competences for the use of CAD-CAM-CAE systems

L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimisation of an industrial design;

CP.7 Competences for the development of motor vehicle manufacturing and assembly technologies, test and validation procedures for motor vehicle components, systems and equipment

- L.O.7.2 Evaluation of advanced technologies for the manufacture of motor vehicles and their correlation with the optimal operating parameters of motor vehicle systems;
- L.O.7.3 applying and developing specific criteria, procedures and methods for the design of modern manufacturing, assembly and maintenance technologies for motor vehicles;

CT.1 Integration skills in specific activities at the workplace and technical skills, in conditions of autonomy and professional independence

- L.O.1.1 to take responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
- L.O.1.2 to show determination, making sustained efforts for success by pursuing clear objectives, to make decisions by choosing from several alternative possibilities;
- L.O.1.3 show initiative, be proactive,
- L.O.1.4 to show self-reflection, quick thinking and to accept criticism and new guidance received from colleagues or superiors;
- L.O.1.5 provide advice to co-workers, providing suggestions on the best way forward;
- L.O.1.6 to be able to work in a team but also independently by developing their own ways of doing things, showing a willingness to learn,
- L.O.1.7 to analyse new problems that have arisen, based on creative, innovative, analytical, holistic thinking;
- L.O.1.8 to ensure customer orientation;
- R.Î.1.9 to apply scientific, technological and engineering knowledge, processing complex information;
- L.O.1.10 to identify problems and make decisions to solve them;
- L.O.1.11 to apply principles, policies and regulations aimed at environmental sustainability, including the reduction of waste, energy and water consumption, the reuse and recycling of products, as well as involvement in the collaborative economy;
- L.O.1.12 to comply with the rules, regulations and guidelines relating to a particular field or sector and to apply them in its day-to-day work;
- L.O.1.13 plan activities, manage the calendar and resources to complete tasks in a timely manner.

CT.2 Communication and teamwork skills

- L.O.2.1 to carry out their work in a team;
- R.Î.2.2 to address an audience, to give a speech, to make a presentation;
- L.O.2.3 moderate discussions between two or more people, including in situations such as workshops, conferences or online events;
- L.O.2.4 use simple digital tools and technologies to communicate, interact and collaborate with others.
- L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find compromise solutions, resolving conflicts;
- L.O.2.6 to be able to lead others, to coordinate a team;
- L.O.2.7 be able to train other team members and organize information, objects and resources;
- L.O.2.8 to motivate others, stimulating action;
- L.O.2.9 to develop teams, managing time and delegating responsibilities;

7. Objectives of the discipline (resulting from the specific skills accumulated)

7.1 General objective of the	Theoretical and applicative training in the construction and operation of motor vehicle
discipline	transmissions.
	In-depth theoretical and applied training in the design and development of automotive
	transmissions.
	Theoretical and applicative training in understanding the physical processes of
	mechanical transmissions controlled by mechatronic systems.
7.2 Specific objectives	Introduction of master's students to the fundamental concepts of modern
	transmissions for motor vehicles. Understanding the structures and
	functionalities of automatic transmissions.
	Understanding the methods and algorithms of designing automatic transmissions.
	Theoretical and applied knowledge related to all stages of product development
	(conception, design, manufacture, operation). Practical skills in approaching
	automotive product development processes.
	Development of automatic transmission design skills.
	Improve your CAD modeling and calculation skills with software packages.
	Practical skills for studying the behavior of mechanical systems controlled by
	mechatronic devices.

8. Content

8.1 Course	Teaching	Number	Observations
	methods	of hours	
Motor vehicle transmissions (operating principles, terminology,	Lecture,	2	
classification, development trends).	discussions		
Kinematics and dynamics of planetary mechanisms.		2	
Automatic planetary transmissions.		2	
Mechanical friction transmissions with continuously variable gear ratio		2	
(CVT).			
Hydromechanical transmissions (with hydrodynamic and hydrostatic		2	
variators).			
Controlled torque distribution systems. All-wheel drive.		2	
Hybrid powertrains.		2	

Bibliography

Preda I. Transmisii mecanice avansate în ingineria automobilului. http://elearning.unitbv.ro

Fischer, R., Küçükay, F., Jürgens, G., Najork, R. and Pollak, B. The Automotive Transmission Book. Powertrain: Springer,

2015.

Naunheimer, H. Bertsche, B. Ryborz, J. Novak, W. Automotive Transmissions - Fundamentals, Selection, Design and Application. Ed. Springer, London, 2011.

Crolla, D. Automotive Engineering – Powertrain, Chassis System and Vehicle Body. Ed. Butterworth-Heinemann, 2009.

Genta, G. Morello, L. The Automotive Chassis. Vol. 1: Components Design. Ed. Springer, 2009.

Genta, G. Morello, L. The Automotive Chassis. Vol. 2: System Design. Ed. Springer, 2009.

Ehsani, M. Gao, Y. Gay, S. Emadi, A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles – Fundamentals, Theory, and Design. CRC Press, 2005.

Reik, W. Reitz, D. Vornehm, M. World of hybrids. Schaeffler Symposium 2006, pp.171-187.

Husain, I. Electric and Hybrid Vehicles Design Fundamentals. CRC Press, Taylor & Francis Group, 2005.

Heisler, H. Advanced Vehicle Technology. Butterworth-Heinemann (Elsevier), 2002.

Reimpell, J. Stoll, H. Betzler, J. The Automotive Chassis: Engineering Principles. SAE International; Butterworth-Heinemann (Elsevier), 2001.

Lechner, G. Naunheimer, H. Automotive Transmissions – Fundamentals, Selection, Design and Application. Ed. Springer, 1999.

Fenton, J. Handbook of automotive powertrains and chassis design. Professional Engineering Publishing, London, 1998.

*** Bosch Automotive Handbook. 11th Edition, Plochingen, Germany, 2022.

Macarie, T.N. Vieru, I. Bădărău-Suster, H. Transmisii automate, automatizate si continue pentru automobile. Ed. PIM Iași, 2018.

Preda,I. Ciolan,Gh. Diaconescu,E. Cristea,D. Transmisii cu varia ie continuă pentru autovehicule. Editura Universită ii din Pitești, 2012.

Năstăsoiu, M. Pădureanu, V. Tractoare. Ed. Univ. Transilvania, 2012.

Preda,I. Roşca,G.M. Tehnici neconven ionale în propulsia autovehiculelor – Poten ialul surselor regenerabile de energie în Uniunea Europeană și în România. Editura Universită ii din Oradea, 2011.

Livin ,Gh. Gaiginschi,R. Horga,V. Drosescu,R. Chiriac,G. Albu,M. Ră oi,M. Damian,I. Petrescu,M. Vehicule electrice hibride. Editura Venus, Iași, 2006.

Macarie, T.N. Transmisii continue pentru autovehicule. Ed. Universită ii din Pitești, 1999.

Tabacu I. Transmisii mecanice pentru autoturisme. Editura Tehnică, București, 1999.

Ciolan, Gh. Preda, I. Pereş, Gh. Cutii de viteze pentru automobile. Editura Didactică și Pedagogică, București, 1998.

ciolarijani i redaji i ciegjani edin de viteze pentra datomobile. Zatedra bit	adetica şi i edagog	ica, Bacarege	., 1336.
8.2 Seminar/ laboratory/ project	Teaching-	Number	Observations
	learning	of hours	
	methods		
Calculation of transmission ratios and torque moments for a planetary	Individual and		
transmission with chosen kinematic scheme	group work,		
Presentation of the project requirements; Initial documentation	assisted	2	
Finalization of the topic; Understanding how it works	training	2	
Making the kinematic scheme		2	
Calculation of transmission reports		2	
Calculation of torques and yields		2	
Making the PPT presentation		2	
Presentation and grading of the project		2	
Dillia and also	•	•	•

Bibliography

Preda I. Transmisii mecanice avansate în ingineria automobilului. http://elearning.unitbv.ro

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of the discipline was discussed with the professors of the department and with representatives of the company Shaeffler Romania.

10. Assessment

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight of		
			the final grade		
10.4 Course		Written knowledge testing	50%		
10.5 Seminar/ laboratory/	Correctness of schemes and	Analysis of the presentation	30%		
project	calculations.	file.			
	The originality of the	Powerpoint presentation	20%		
	presentation.				
10.6 Minimum performance stand	dard				
Grade 5 for the project					
Grade 5 on the knowledge test					

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Dean, Prof.dr.ing. Ioan Călin ROȘCA	Head of Department , Prof.dr.ing. Mihai DUGULEANA
Course holder,	Project coordinator
Conf.dr.ing. Dragoș Sorin DIMA	Conf.dr.ing. Dragoș Sorin DIMA

Note:

Field of study - choose one of the following variants: Bachelor's/Master's/Doctorate (to be filled in according to the Nomenclature of fields and specializations/university study programs in force);

The study cycle - one of the following variants is chosen: Bachelor's/ Master's/ Doctorate;

Discipline regime (content) - one of the variants is chosen: **DF** (fundamental discipline)/ **DD** (discipline in the field)/ **DS** (specialized discipline)/ **DC** (complementary discipline) - for the bachelor's level; **DAP** (deepening discipline)/ **DSI** (synthesis discipline)/ **DCA** (advanced knowledge discipline) - for the master's level;

Discipline regime (compulsory) - one of the variants is chosen: **DI** (compulsory subject)/ **DO** (optional subject)/ **DFac** (optional subject);

One credit is equivalent to 25 hours of study (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Fun	Fundamentals in Electronics and Computers				
2.2 Course convenor			Postelnicu Cristian-Cezar					
2.3 Seminar/ laboratory/ project		Postelnicu Cristian-Cezar						
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	V	2.7 Course	Content ³⁾	DAP
						status	Attendance type ⁴⁾	DO

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	0/0/1
3.4 Total number of hours in	28	out of which: 3.5 lecture	14	3.6 seminar/ laboratory/ project	0/0/14
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					25
Additional documentation in libraries, specialized electronic platforms, and field research					15
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					14
Tutorial					4
Examinations					2
Other activities					2

3.7 Total number of hours of student activity	
3.8 Total number per semester	90
3.9 Number of credits ⁵⁾	3

4. Prerequisites (if applicable)

4.1 curriculum-related	Graduation of Applied Electronics course	
4.2 competences-related	Knowledge and abilities to work in one or more standard or high-lev	rel
	programming languages (e.g., Excel, Matlab)	

5. Conditions (if applicable)

5.1 for course development	Lecture room with multimedia equipment and minimum 25 places
5.2 for seminar/ laboratory/	Lecture room with multimedia equipment, electronic components and materials,
project development	and minimum 25 places

CP2. Skills in the design of systems, equipment and components of motor vehicles

- L.O.2.1 the ability to study, interpret and capitalize on the technical resources specific to the automotive manufacturing industry;
- L.O.2.2 the use of advanced concepts, techniques and principles for the design of modern automotive systems and equipment;
- L.O.2.3 the application of mathematical methods and the use of calculation and simulation programs to perform technical analyses and design solutions for specific problems;
- L.O.2.5 Prototype design of automotive components and systems by applying advanced engineering principles;

CP4 Competences to carry out scientific research

- L.O.4.1 To conduct scientific research, to conceive or create new knowledge by formulating questions in the field by researching, improving or developing concepts, theories, models, techniques, tools, software or operational methods and by using scientific methods and techniques;
- L.O.4.2 Gather information about current vehicle trends and styles and the need for new products or services;
- L.O.4.3 Prepare reports describing the results and processes of scientific or technical research or assessing its progress. These reports help researchers keep up with recent findings;
- L.O.4.4 Develop research papers or give presentations to report the results of a research project, indicating the analysis procedures and methods that led to those results, as well as possible interpretations of the results;
- L.O.4.5 Conduct research on present and future developments and trends in design, as well as related target market characteristics;
- L.O.4.6 Anticipate changes in automotive technology, supervise and investigate recent technological trends and developments;
- L.O.4.7 Manage research data;
- L.O.4.9 Synthesize information, interpret and critically summarize new and complex information from various sources;
- L.O.4.10 Interact professionally in research and professional environments;
- L.O.4.11 Apply systematic research methods and communicate with relevant parties to find specific information, evaluating research results with a view to relevant estimation of the information, as well as related technical systems and their developments;
- L.O.4.12 Demonstrate in-depth knowledge and complex understanding of the field of research, including responsible research, ethical principles and scientific integrity in research, respect for privacy and GDPR requirements, related to research activities in a particular discipline.

CP.6 Competences for the use of CAD-CAM-CAE systems

- L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimisation of an industrial design;
- CP.7 Competences for the development of motor vehicle manufacturing and assembly technologies, test and validation procedures for motor vehicle components, systems and equipment
 - L.O.7.2 Evaluation of advanced technologies for the manufacture of motor vehicles and their correlation with the optimal operating parameters of motor vehicle systems;
- L.O.7.3 applying and developing specific criteria, procedures and methods for the design of modern manufacturing, assembly and maintenance technologies for motor vehicles;

Transversal competences

CT.1 Integration skills in specific activities at the workplace and technical skills, in conditions of autonomy and professional independence

- L.O.1.1 to take responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
- L.O.1.2 to show determination, making sustained efforts for success by pursuing clear objectives, to make decisions by choosing from several alternative possibilities;
- L.O.1.3 show initiative, be proactive,
- L.O.1.4 to show self-reflection, quick thinking and to accept criticism and new guidance received from colleagues or superiors;
- L.O.1.5 provide advice to co-workers, providing suggestions on the best way forward;
- L.O.1.6 to be able to work in a team but also independently by developing their own ways of doing things, showing a willingness to learn,
- L.O.1.7 to analyse new problems that have arisen, based on creative, innovative, analytical, holistic thinking;
- L.O.1.8 to ensure customer orientation;
- R.Î.1.9 to apply scientific, technological and engineering knowledge, processing complex information;
- L.O.1.10 to identify problems and make decisions to solve them;
- L.O.1.11 to apply principles, policies and regulations aimed at environmental sustainability, including the reduction of waste, energy and water consumption, the reuse and recycling of products, as well as involvement in the collaborative economy;
- L.O.1.12 to comply with the rules, regulations and guidelines relating to a particular field or sector and to apply them in its day-to-day work;
- L.O.1.13 plan activities, manage the calendar and resources to complete tasks in a timely manner.

CT.2 Communication and teamwork skills

- L.O.2.1 to carry out their work in a team;
- R.Î.2.2 to address an audience, to give a speech, to make a presentation;
- L.O.2.3 moderate discussions between two or more people, including in situations such as workshops, conferences or online events;
- L.O.2.4 use simple digital tools and technologies to communicate, interact and collaborate with others.
- L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find compromise solutions, resolving conflicts;
- L.O.2.6 to be able to lead others, to coordinate a team;
- L.O.2.7 be able to train other team members and organize information, objects and resources;
- L.O.2.8 to motivate others, stimulating action;
- L.O.2.9 to develop teams, managing time and delegating responsibilities;

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Acquiring knowledge and forming basic skills in digital electronics and
	computer science.
7.2 Specific objectives	Knowledge of the types of control systems in vehicles;
	Understanding the role of control systems in vehicles and their operating
	principles;
	Knowledge of the structure of the control systems and the functional role of
	the components;
	Acquiring practical and practical skills in the field of measurements.

8. Content

8.1 Course	Teaching methods	Number of	Remarks
		hours	
1. Digital electronics basics		2	
2. Digital circuits components: (Numbering systems,		2	
Oscillators, Counters, Counter Decoding Circuitry, Shift	Presentation; Conversation		
Registers. Digital Displays. Encoders, Decoders etc.)	(Use of teaching materials		
3. Computer Architecture	presented with video	2	
4. Computers memories (RAM, ROM, SRAM, DRAM,	projector)	2	
DMA)	Demonstration (use of		
5. Busses. Data structures. Data processing	representative real devices)	2	
6. Control unit. Microprocessors. Microcontrollers		2	
7. Input/Output Devices. Operating systems		2	

Bibliography

- 1. Ionel S. Inginerie Electronică, Editura Politehnica, Timisoara, 2011
- 2. Rajaraman, V., Fundamentals on Computers, Prentice Hall of India, 2006
- 3. Sedra A. S., Smith K.C., Microelectronic Circuits, Sounders College Publishing, New York, 1991
- 4. Jaeger R.C., Blalock T.N., Microelectronic Circuit Design, McGraw Hill, New York, 2004

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number of	Remarks
		hours	
Implementation of a Raspberry Pi application in the field	Demonstration, experiment,	14	
of Internet of things	direct action, problem-solving		

Bibliography

- 1. lonel S. Inginerie Electronică, Editura Politehnica, Timisoara, 2011
- 2. Rajaraman, V., Fundamentals on Computers, Prentice Hall of India, 2006
- 3. Sedra A. S., Smith K.C., Microelectronic Circuits, Sounders College Publishing, New York, 1991
- 4. Jaeger R.C., Blalock T.N., Microelectronic Circuit Design, McGraw Hill, New York, 2004
- 5. Patterson, David A., and John L. Hennessy. Computer organization and design: the hardware/software interface. Morgan Kaufmann, 2008.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The curriculum responds to the current requirements regarding the skills that automotive industry specialists must have.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Written	Written exam	
	- Knowledge of concepts;	The subjects cover the	70%
	- The ability to apply the accumulated knowledge;	key chapters of the	
	- The language appropriate to the subject;	course.	
	- Attitude towards learning		
10.5 Seminar/	Project defend		

laboratory/	- Rhythm of activity; keeping the calendar;	- Direct and systematic	30%			
project		observation;				
		- Record progress				
		- Project defend				
10.6 Minimal performance standard						
The final average is calculated only if the student gets a minimum of 5 points at the project defend						

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA	Prof.dr.ing. Mihai Duguleana
Dean	Head of departament
Postelnicu Cristian-Cezar	Postelnicu Cristian-Cezar
Course holder	Holder of laboratory

Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: BA/MA/PhD;
- Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Automotive Design

2. Data about the course

2.1 Name of course		30	3D scanning and reconstruction techniques					
2.2 Course holder		Pr	Prof. Duguleană Mihai					
2.3 Seminar/ laboratory/ project		Pr	Prof. Duguleană Mihai					
convenor								
2.4 Study year	1	2.5 Semester	1	2.6 Evaluation	V	2.7 Discipline	Content ²⁾	SC
				type		status	Attendance type ³⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

					
3.1 Number of hours per 4		out of which: 3.2 course 2		3.3 seminar/ laboratory/	0/2/0
week				project	
3.4 Total number of hours in	56	out of which: 3.5 course	28	3.6 seminar/ laboratory/	0/28/0
the curriculum				project	
Time allocation					hours
Study of textbooks, course support, bibliography and notes			20		
Additional documentation in libraries, specialized electronic platforms, and field research			26		
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays		folios, and essays	14		
Tutorial			2		
Examinations			2		
Other activities					

3.7 Total number of individual learning hours	
3.8 Total number per semester	120
3.9 Number of credits ⁵⁾	4

4. Prerequisites (if applicable)

4.1 to the curriculum	Knowledge of 3D Modelling, 3D Graphics Programming
4.2 to competences	Operating with fundamental concepts of engineering sciences.

5. Conditions (if applicable)

5.1 of course development	Classroom equipped with multimedia equipment and minimum capacity of 25
	seats
5.2 of seminar/ laboratory/	• Laboratory room, with board, equipped with specific systems, minimum 13
project development	seats.

6. Specific competences

F03.2-PS7.2-01/ed.3, rev.6

	Cp1. Competences in the design of systems, equipment and vehicle components
	L.O.1.1 the ability to study, interpret and capitalize on technical resources specific to the motor
es	vehicle manufacturing industry;
enc	L.O.1.2 the use of advanced concepts, techniques and principles regarding the design of modern
pet	systems and equipment intended for motor vehicles;
ПO	L.O.1.3 applying mathematical methods and using calculation and simulation programs to perform
ושר	technical analyzes and design solutions for specific problems;
Professional competences	L.O.1.4 designing prototypes of vehicle components and systems by applying advanced engineering
ofes	principles;
Pre	Cp3. Skills in using CAD-CAM-CAE systems
	L.O.3.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification,
	analysis and optimization of an industrial drawing or model;
	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing
	willingness to work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to
	make decisions choosing from several alternative possibilities;
	L.O.1.3 to show initiative, to be proactive,
	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex
	information, operating technological installations, tools or digital equipment;
	L.O.1.5 identify problems and make decisions to solve them;
	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to
	apply them in his day-to-day activity;
	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
	Ct2. Communication and teamwork skills
	L.O.2.1 to carry out their work in a team;
	L.O. 2.2 to address an audience, give a speech, make a presentation;
	L.O.2.3 to moderate discussions between two or more people, including in situations such as
	workshops, conferences or online events;
	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with
10	others.
Jces	L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members,
eter	to find compromise solutions, resolving conflicts;
dw	L.O.2.6 to be able to lead others, coordinate a team;
00 10	L.O.2.7 be able to train other team members and organize information, objects and resources;
Transversal competences	L.O.2.8 to motivate others, stimulating action;
nsv	L.O.2.9 to develop teams, managing time and delegating responsibilities;
Trai	L.O.2.10 to create and maintain networks, promoting ideas, products and services.
L	1

7. Course objectives (resulting from the specific competences to be acquired)

	- transmig mann and apartment and processes as a discountry
7.1 General	Theoretical and practical training in 3D scanning and reconstruction fundamentals.
discipline	
objective	
7.2 Specific	■ Understanding different 3D scanning methods
objectives	■ Deepening the photogrammetry technique

8. Content

8.1 Course	Teaching methods	Hours	Remarks

F03.2-PS7.2-01/ed.3, rev.6

1. Introduction to 3D scanning techniques	Exposure;	4 hours	
- Mathematical explanation;	Conversation		
- The specificity of the scanning technologies;	(Use of teaching		
- Functions of the resulting 3D models;	materials provided		
- Requirements and performance of the systems used.	with the projector)		
2. Fundamentals of 3D modeling:		4 hours	
- modeling programs			
- software editing			
- digital representations - formats and working environments			
3. Reconstruction technologies:		4 hours	
- data collection systems			
- processing systems			
- display systems			
4. 3D scanning methods		4 hours	
- laser scanning;			
- photogrammetry.			
5. Photogrammetry		4 hours	
- Shooting procedure;			
- Pre-processing;			
- Processing software			
- Post-processing			
6. Photogrammetry with drones:		4 hours	
- particularities			
- specialized software			
- GIS			
7. Laser scanning:		4 hours	
- Scanning procedure;			
- Pre-processing;			
- Processing software			
- Post-processing			
Bibliography			
1. Mikhail, Edward M., James S. Bethel, and J. Chris McGlone. "Introdu	iction to modern photo	gramme	
York (2001).			
2. Eisenbeiß, Henri. UAV photogrammetry. Diss. ETH Zurich, 2009.			
3. Baltsavias, Emmanuel P. "A comparison between photogrammet	ry and laser scanning.'	" ISPRS J	
photogrammetry and Remote Sensing 54.2-3 (1999): 83-94.			
8.2 Seminar/ laboratory/ project	Teaching-learning met	t	Remarks
8.2.1 Laboratory			
1. Laboratory equipment. Use of cameras for photogrammetry	Demonstration	4 hours	
2. Data acquisition and processing	experiment,	8 hours	
3. Laser scanning vs photogrammetry - comparison	direct action, problems.	4 hours	
4. Photogrammetry with UAV	אָן טטופוווס.	8 hours	
5. Study on web collections		4 hours	

F03.2-PS7.2-01/ed.3, rev.6

Bibliography

- 1. Mikhail, Edward M., James S. Bethel, and J. Chris McGlone. "Introduction to modern photogrammetry." New Yor
- 2. Eisenbeiß, Henri. UAV photogrammetry. Diss. ETH Zurich, 2009.
- 3. Baltsavias, Emmanuel P. "A comparison between photogrammetry and laser scanning." ISPRS Jophotogrammetry and Remote Sensing 54.2-3 (1999): 83-94.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage of
		methods	the final grade
10.4 Course	An ability to apply knowledge of mathematics,	Theoretical and	50%
	science, and engineering. An ability to identify,	practical examination –	
	formulates, and solves engineering problems.	project, case study	
10.5 Seminar/	An ability to design a system, component or	Laboratory	15%
laboratory/	process to meet desired needs.		
project	An ability to use techniques, skills, and modern	Applications test,	35%
	engineering tools necessary for engineering	exercises	
	practices; project - case study		

• Participation in the exam is conditional on the complete laboratory work and the promotion of the laboratory colloquium.

10.6 Minimal performance standard

- Minimum requirements for grade 5: at all assessment activities, a minimum of half of the score awarded, respectively minimum grade 5. The minimum performance standards are given by:
- o Use of specific equipment for 3D reconstruction / scanning.
- o Use of software for 3D reconstruction / scanning.
- o Making 3D models using web information.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA	Prof.dr.ing. Duguleană Mihai
Dean of Faculty of Mechanical Engineering	Head of Departament Automotive and
	Transportation Engineering
Prof. Duguleană Mihai	Prof. Duguleană Mihai
Course holder	Holder of seminar/ laboratory

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- $^{\rm 2)}$ $\,$ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);

F03.2-PS7.2-01/ed.3, rev.6

- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

F03.2-PS7.2-01/ed.3, rev.6 5

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotives and Transportation
1.4 Field of study ¹⁾	Master
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotives Design

2. Data about the course

2.1 Name of course			Ехр	Experimental Systems for testing the Automotives Elements				
2.2 Course convenor		Pro	Prof.dr.ing. Lates Mihai Tiberiu					
2.3 Seminar/ laboratory/ project		Prof.dr.ing. Lates Mihai Tiberiu						
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	V	2.7 Course	Content ³⁾	AC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	1
3.4 Total number of hours in	28	out of which: 3.5 lecture	14	3.6 seminar/ laboratory/ project	14
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					39
Additional documentation in libraries, specialized electronic platforms, and field research					19
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					14
Tutorial					-
Examinations					3
Other activities				-	

3.7 Total number of hours of student activity			
3.8 Total number per semester	100		
3.9 Number of credits ⁵⁾	4		

4. Prerequisites (if applicable)

4.1 curriculum-related	Tribology, Advanced Mechanical Transmissions in Automotives Engineerings.
4.2 competences-related	Theoretical and practical knowledge in the field of tribological and automotives
	mechanical transmissions testing.

5. Conditions (if applicable)

5.1 for course development	Classroom with blackboard and video projector
	Recommended references
5.2 for seminar/ laboratory/	Laboratory with test rig
project development	Recommended references

6. Specific competences and learning outcomes

CP.1 Adjusting the products projects

Learning outcomes.

- 1.1. Knowledge
- R.Î.1.1.1 The graduate of the master's study program is able to interpret the technical requirements of the clients, analyzing, understanding and applying the information provided regarding the technical conditions;
- R.Î.1.1.3 The graduate of the master's study program is able to identify customer needs, using appropriate questions and active listening to identify customer expectations, wishes and requirements according to products and services;
- 1.2 Abilities
- R.Î.1.2.4 preparation of functional models, prototypes for testing the concepts and reproduction possibilities; creating the prototypes to evaluate the pre-production tests;
- R.Î.1.2.5 elaboration of the test protocols for the automotives components and equipments;
- 1.3 Responsibility and autonomy
- R.Î.1.3.2 Approving the technical project of the final product in order to machining and assembling the product.

CP.3 Anticipates the automotives technologies changes

Learning outcomes.

- 3.1. Knowledge
- R.Î.3.1.1. The graduate analyses and argues the theoretical and experimental results and the technical documentation associated to the automotive engineering domain.
- 3.2. Skills
- R.Î.3.2.1. The graduate proves knowing and using of the advanced analysis methods in the automotives construction and exploitation.
- 3.3. Responsibility and autonomy
- R.Î.3.3.1. The graduate proves autonomy in learning specific problems to the domain.

CP.8 Makes the scientific research

Learning outcomes.

- 8.1 Knowledge
- R.Î.8.1.1 The graduate proves the thorough knowledge and complex understanding of the research domain, including the responsible research, the ethics and sci9entific integrity in the research process, the private life respect and the GDPR demands regarding the research process in a given area.
- R.Î.8.1.2 The graduate makes scientific research, designs and creates new knowledge by formulating questions in the domain through research, optimization and development of concepts, theories, models, techniques, tools, software or operational methods by using scientific methods and techniques.
- R.Î.8.1.3 The graduate is capable to collect information about the actual styles and tendencies regarding the vehicles and the new products and services requirements.
- R.Î.8.1.4 the graduate is capable to make researches regarding the present and future evolutions and the design trends and regarding the targeted characteristics connected to the market.
- R.Î.8.1.5 The graduate is capable to prepare reports which describe the results from scientific or technical research or evaluate their progresses. These reports help the researchers to be informed with the recent discoveries.
- R.Î.8.1.6 The graduate is capable to synthesize information, to interpret and to resume critically new and complex from different sources.
- R.Î.8.1.7 The graduate is capable to anticipate the automotives technologies changes, tu supervise and to investigate the actual tendences and technological evolutions.

F03.2-PS7*8.501*464113₄4ev.6

R.Î.8.2.1 Absolventul este capabil să opereze aparate de cercetare stiintifica si de laborator;

R.Î.8.2.2 Absolventul este capabil să aplice metode de cercetare sistematica si să comunice cu

Transversal competences

CT.1 Integration skills in specific workplace activities and technical skills, in conditions of autonomy and professional independence

Learning outcomes. The graduate of the master's study program is able to:

- R.Î.1.1 to take responsibility, to accept responsibility for one's own decisions, showing willingness to work, respecting one's commitments;
- R.Î.1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
- R.Î.1.3 to show initiative, to be proactive.

CT.2 Communication and teamwork skills

Learning outcomes. The graduate of the master's study program is able to:

- R.Î.2.1 to carry out their work in a team;
- R.Î.2.2 to address an audience, give a speech, make a presentation;
- R.Î.2.3 to moderate discussions between two or more people, including in situations such as workshops, conferences or online events.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Theoretical and applied training in experimental tests and associated
	mechanical and mechatronic systems.
7.2 Specific objectives	Theoretical and applied training on the structure, programming and
	operation of test stands.
	Training in the development of experiments.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Test planning. The parameters. Control. Values.	Lecture based on video	1 hour	
Precision. Equipment. Saving data.	projector		
2. Analysis of experimental data. Errors.	Lecture based on video	1hour	
Uncertainty analysis. Statistical analysis. Graphic	projector		
formats.			
3. Measurement of forces. Forces. Moments.	Lecture based on video	2 hours	
Tensions and efforts.	projector		
4. Measurement of displacements. Travels. Speeds.	Lecture based on video	2 hours	
Vibrations.	projector		
5. Definition of tests. Testing of mechanical	Lecture based on video	7 hours	
transmissions (gears, chain drives, belt drives).	projector		
Bearing testing. Tribological testing.			
6. Acquisition of data. Drafting the report and	Lecture based on video	1 hour	
presentation.	projector		
Bibliography			

Bibliography

1. J. P. Holman. Experimental methods for engineers. Boston, McGraw-Hill Publishing House, 2001.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		

1. Run-in tests	Practical tests	2 hours
2. Chain/skid friction testing	Practical tests	2 hours
3. Testing chain drives	Practical tests	2 hours
4. Bearing testing	Practical tests	2 hours
5. Testing of bearing assemblies	Practical tests	2 hours
6. Chain/skid wear testing (oscillating motion)	Practical tests	2 hours
7. Chain/skid Stribeck curve testing	Practical tests	2 hours

Bibliography

1. J. P. Holman. Experimental methods for engineers. Boston, McGraw-Hill Publishing House, 2001.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical knowledge underpins the latest approaches in the field of experimental systems in automotive mechanics, and practical examples are based on mechanical engineering problems.

The analytical program is in line with the new requirements of the companies producing automotive components (eg Schaeffler Group).

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage		
			of the final grade		
10.4 Course	Correct use of specific testing	Written exam	50%		
	principles and selection of				
	appropriate test solutions for				
	given problems				
10.5 Seminar/ laboratory/	Correct use of test stands for	Oral exam	50%		
project	given problems				
10.6 Minimal performance standard					
Correct use of testing principles for given problems					

Evaluation grille with performance levels				
Performance level	General description	Characteristics		
Excellent (10–9)	Knows all the concepts. The analyses are innovative	Perfect terminology, logic structure,		
Excellent (10-9)	and clear	autonomy, critical thinking		
Verny good (9)	Proves very good understanding and correct	Minor errors, conceptual and applicative		
Verry good (8)	applying.	coherence		
Good (7)	Knows the basic concepts, but the applications are	Sometimes no exact terminology,		
G000 (7)	partially accomplished	incomplete explanations		
Sufficient (5-6)	Non-logic application of the knowledge.	Partially correct answers, lacunas of logic		
Nonsufficient (<5)	Not proving the understanding of the basic concepts	Theoretic confusions, wrong applications, lack of argumentations		

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof. dr. eng. Ioan Călin ROSCA	Prof. dr. eng. Mihai DUGULEANA
Dean	Head of Department
Prof.dr.ing. Mihai Tiberiu LATES	Prof.dr.ing. Mihai Tiberiu LATES
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Faculty of Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	se		Virtual Instrumentation					
2.2 Course convenor		Prof. Dr Petru A. COTFAS						
2.3 Seminar/ lab	2.3 Seminar/ laboratory/ project Prof. Dr Petru A. COTFAS							
convenor								
2.4 Study year	П	2.5 Semester	1 2.6 Evaluation type E 2.7 Course Content ³⁾			SC		
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	0/1/0
3.4 Total number of hours in	28	out of which: 3.5 lecture	14	3.6 seminar/ laboratory/ project	0/14/0
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes				42	
Additional documentation in libraries, specialized electronic platforms, and field research				34	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays				28	
Tutorial				14	
Examinations				4	
Other activities					

3.7 Total number of hours of student activity	
3.8 Total number per semester	150
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	Basic knowledge of computer programming
4.2 competences-related	Using of computers

5. Conditions (if applicable)

5.1 for course development	Classroom with multimedia systems.
5.2 for seminar/ laboratory/	Classroom with necessary systems and PCs.
project development	

6. Specific competences and learning outcomes

CP.1 Adjusts product designs

1.1 Knowledge

L.O.1.1.4 The graduate can study, interpret and capitalise on technical resources specific to the automotive manufacturing industry;

1.2 Skills

L.O.1.2.2 The graduate can apply mathematical methods and the use of calculation and simulation programs to perform technical analyses and design solutions for specific problems;

CP.4 Approves engineering projects

4.1. Knowledge

L.O.4.1.1. The graduate analyses and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.

4.2. Skills

L.O.4.2.2. The graduate evaluates and approves technological projects for the manufacture and assembly of automobiles or their components;

CP.8 Conducts scientific research.

8.1 Knowledge

L.O.8.1.2 The graduate conducts scientific research, conceives and creates new knowledge by formulating questions in the field by researching, improving or developing concepts, theories, models, techniques, instruments, software or operational methods and by using scientific methods and techniques; L.O.8.1.6 The graduate is able to synthesize information, critically interpret and summarize new and complex information from various sources.

CP.13 Develops test procedures

13.1 Knowledge

L.O.13.1.1 To interpret and analyze data collected during testing, to formulate conclusions, new perspectives or solutions.

L.O.13.1.2 To record data that have been specifically identified during previous trials, to verify that the results of the trial produce specific results;

13.2 Skills

L.O.13.2.1 The graduate has the ability to operate precision measurement equipment;

L.O.13.2.2 The graduate has the ability to evaluate the performance of automotive systems by using specific testing procedures and equipment;

L.O.13.2.8 The graduate has the ability to select, acquire and use automotive testing equipment;

CP.15 Uses application-specific interfaces.

15.1 Knowledge

L.O.15.1.1 The graduate can evaluate and choose platforms, programming languages and software technologies suitable for projects in the automotive industry;

5.2 Skills

L.O.15.2.1 The graduate has the ability to understand and apply the principles of programming and software development technologies in the automotive industry;

L.O.15.2.2 The graduate has the ability to develop software for automotive and related systems;

L.O.15.2.4 The graduate has the ability to test and debug software to ensure the correct and safe operation of automotive systems;

15.3 Responsibility and autonomy

L.O.15.3.1 The graduate has the ability to manage automotive software development projects, including planning, budgeting and monitoring progress.

CP.16 Design the user interface

16.1 Knowledge

L.O.16.1.2 The graduate has in-depth knowledge of software architectures for graphical interfaces and an understanding of how they contribute to modular and maintainable development.

L.O.16.1.3 The graduate has in-depth knowledge of specific programming techniques and languages.

16.2 Skills

L.O.16.2.2 The graduate can design information architecture, user flows, wireframes and prototypes of intuitive and efficient interfaces

L.O.16.2.3 The graduate can integrate software components with hardware specific to systems or machines (e.g. sensors, actuators, displays, buttons), using appropriate drivers and APIs.

16.3 Responsibility and autonomy

L.O.16.3.3 The graduate can adapt quickly to new requirements, technologies or changes in project specifications.

L.O.16.3.4 The graduate demonstrates initiative in exploring and implementing innovative solutions to improve human-system/machine interaction.

Transversal competences

CT.1 Self-management skills and competences

L.O.1.3 to show initiative, to be proactive;

CT.2 Social and communication skills and competences

L.O.2.1 to work in a team;

L.O.2.2 to address an audience, to give a speech, to make a presentation;

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Explaining the concepts related to the virtual instrumentation from the	
	perspective of using them in designing and managing the electric, electronic	
	and mechatronic systems of automobiles.	
7.2 Specific objectives	Understanding the specific concepts of virtual instrumentation and using	
	graphical programming architectures in solving specific engineering	
	problems;	
	Gaining practical skills of working with software packages for virtual	
	instrumentation dedicated to the management and control of the	
	mechatronic systems in auto-vehicles.	
	Gaining the theoretic and applied knowledge about the structure and testing	
	for electric, electronic and mechatronic systems of automobiles.	

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Introduction of the Virtual Instrumentation and	Lecture with cu slides	2 hours	
Graphical System Design concepts. Graphical	improved by		
Programming Language - LabVIEW	conversation, didactic		
Modular Programming. Programming Structures.	demonstration. Learning	2 hours	
Advanced Programming Architectures	through demonstrations	2 hours	
Data acquisition in LabVIEW. Measurements and	by simulation and	4 hours	
data logging in auto-vehicles	hardware using.		
Drivers and communication interfaces with		2 hours	
mechatronic systems in auto-vehicles.			
Virtual Instrumentation applications. Combining the		2 hours	
LabVIEW software with CAD software.			

Bibliography

- 1. P.A. Cotfas, Instrumentație Virtuală, notițe de curs, 2024-2025;
- 2. P. Adrian Cotfas, D. Tudor Cotfas, and H. Hedesiu, Eds., "LabVIEW Virtual Instrumentation in Education and Industry", IntechOpen, Jun. 12, 2024. doi: 10.5772/intechopen.102279.
- 3. H.A. Modran, D. Ursutiu, Instrumentatie virtuala : indrumar de laborator [Resursa electronica], Editura Universitatii Transilvania din Brasov, 2022;
- 4. J. Essick Hands-On Introduction to LabVIEW for Scientists and Engineers, Oxford University Press Inc, 2018;
- 5. P. A. Cotfas, D. T. Cotfas, D. Ursutiu, C. Samoila "NI ELVIS Computer-Based Instrumentation", National Technology & Science Press USA, ISBN 978-1-934891-11-7, IDS Number: 745SR, ISSN: 1582-2214, 2011;
- 6. P.A. Cotfas "Prelucrarea semnalelor. Aplicatii in LabVIEW", Ed. Lux Libris, ISBN 978-973-131-071-8, Brasov, 2010;
- 7. ***LabVIEW Manual (LabVIEW Help);
- 8. Ghionea, I., Initiere in mediul de programare grafica LabVIEW, www.catia.ro/articole.html , Accesat octombrie 2011;

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Laboratory introduction. LabVIEW introduction	Conversation	Duration: 2 hours	
Applications based on programming structures	Conversation + individual	Duration: 2 hours	
	experiment		
State-Machine and Producer-Consumer	Conversation + individual	Duration: 2 hours	
architectures in automotive applications	experiment		
Virtual Instruments for monitoring and control	Conversation + individual	Duration: 4 hours	
using sensors and actuators	experiment		
Electric and electronic instruments control based	Conversation + individual	Duration: 2 hours	
on LabVIEW drivers	experiment		
Working with LabVIEW projects. Testing the	Conversation + individual	Duration: 2 hours	
mechatronic systems in auto-vehicles.	experiment		

Bibliography

- 1. P.A. Cotfas, Instrumentație Virtuală, notițe de curs, 2024-2025;
- 2. P. Adrian Cotfas, D. Tudor Cotfas, and H. Hedesiu, Eds., "LabVIEW Virtual Instrumentation in Education and Industry", IntechOpen, Jun. 12, 2024. doi: 10.5772/intechopen.102279.
- 3. H.A. Modran, D. Ursutiu, Instrumentatie virtuala : indrumar de laborator [Resursa electronica], Editura Universitatii Transilvania din Brasov, 2022;
- 4. J. Essick Hands-On Introduction to LabVIEW for Scientists and Engineers, Oxford University Press Inc, 2018;
- 5. P. A. Cotfas, D. T. Cotfas, D. Ursutiu, C. Samoila "NI ELVIS Computer-Based Instrumentation", National Technology & Science Press USA, ISBN 978-1-934891-11-7, IDS Number: 745SR, ISSN: 1582-2214, 2011;
- 6. P.A. Cotfas "Prelucrarea semnalelor. Aplicatii in LabVIEW", Ed. Lux Libris, ISBN 978-973-131-071-8, Brasov, 2010;
- 7. ***LabVIEW Manual (LabVIEW Help);
- 8. Ghionea, I., Initiere in mediul de programare grafica LabVIEW, www.catia.ro/articole.html , Accesat octombrie 2011;

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of the course assures acquiring knowledge and the necessary skills in the use of modern technologies in the field of virtual instrumentation and the ability to use programming techniques using the LabVIEW graphic programming language with applications in the automotive field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Correct explanation of		
	creating a virtual instrument,		
	implementing an architecture		
	or method using the		
	theoretic knowledge taught.		
	Comparative analysis of		
	certain architectures or		
	programming methods.	Written evaluation on	
	Correct usage of specific	subjective or objective items	70%
	language	Written evaluation on	70%
	Clarity, coherence and	subjective or objective items	
	concision in presentation		
	Coverage of requested topics		
	Correct explanation of		
	creating a virtual instrument,		
	implementing an architecture		
	or method using the		
	theoretic knowledge taught.		
10.5 Seminar/ laboratory/	Implementation of		
project	architecture or programing	Computer testing and also	
	method for creating a virtual	checking the completion of	30%
	instrument for information	works during laboratory.	
	acquisition or processing.		
10.6 Minimal performance star	ndard		

10.6 Minimal performance standard

- Theoretic trial: getting a minimum score of 4 points from the 9 allocated to the theoretical subjects; a point by default.
- Laboratory: Using modular programing in LabVIEW and accomplishing data acquisition and graphic display of results in the application panel.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof. Dr. Ing. Ioan Călin Roșca,	Prof. univ. dr. ing. DUGULEANĂ Mihai
Dean of Faculty of Mechanical Engineering	Head of Department
Prof. Dr. Petru A. COTFAS,	Prof. Dr. Petru A. COTFAS,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	se		Practice for research and development I					
2.2 Course conve	enor							
2.3 Seminar/ laboratory/ project			Pro	f. Ph. D. eng. Florin GÎF	RBAC	IA		
convenor								
2.4 Study year 2 2.5 Semester		3	2.6 Evaluation type	С	2.7 Course	Content ³⁾	PC	
						status	Attendance type ⁴⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	12	out of which: 3.2 lecture	0	3.3 seminar/ laboratory/ project	0/0/12
3.4 Total number of hours in	168	out of which: 3.5 lecture	0	3.6 seminar/ laboratory/ project	168
the curriculum					
Time allocation					
Study of textbooks, course support, bibliography and notes					
Additional documentation in libraries, specialized electronic platforms, and field research					
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					
Tutorial					
Examinations					
Other activities					

3.7 Total number of hours of student activity		
3.8 Total number per semester	168	
3.9 Number of credits ⁵⁾	4	

4. Prerequisites (if applicable)

4.1 curriculum-related	Elementary concepts of automotive engineering, computer-aided design
4.2 competences-related	Operating with fundamental concepts of engineering sciences.

5. Conditions (if applicable)

5.1 for course development	•	projector
5.2 for seminar/ laboratory/	•	projector
project development	•	laboratory equipped with computers
	•	Windows operating system, Matlab

6. Specific competences and learning outcomes

- C1. Automobile Construction
 - L.O.1.1 The graduate identifies and explains the basic concepts, theories and methods of the field of automotive engineering and the specialization.
 - L.O.1.2 The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.
 - L.O.1.3 The graduate develops professional projects by selecting, combining, and using concepts, principles, methodologies and technologies from the field.
 - L.O.1.4 The graduate selects and analyzes bibliographic sources specific to the field.
 - L.O.1.5 The graduate demonstrates autonomy in learning on issues specific to the field.
- C2. Conducts scientific research.
 - L.O.2.1 The graduate is able to gather information on current vehicle trends and styles and the need for new products or services.
 - L.O.2.2 The graduate is able to conduct research on current and future developments and design trends, as well as related target market characteristics.
 - L.O.2.3 The graduate is able to prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers keep abreast of recent discoveries.
 - L.O.2.4 The graduate is able to synthesize information, critically interpret and summarize new and complex information from various sources.
 - L.O.2.5 The graduate is able to anticipate changes in automotive technology, monitor and investigate recent technological trends and developments.
 - L.O.2.6 The graduate is able to apply systematic research methods and communicate with relevant parties to find specific information, evaluating research results in terms of relevant estimation of information, as well as related technical systems and their developments.
 - L.O.2.7 The graduate is able to anticipate changes in automotive technology, to monitor and investigate recent technological trends and developments.
 - L.O.2.8 The graduate is able to prepare research documents or give presentations to report the results of a research project carried out, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results.
 - L.O.2.9 The graduate is able to manage data in the field of research.

Transversal competences

- Ct1. Self-driving skills and competencies
 - L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
 - L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
 - L.O.1.3 to show initiative, to be proactive,
 - L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
 - L.O.1.5 identify problems and make decisions to solve them;
 - L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
 - L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
- Ct2. Social and communication skills and competencies
 - L.O.2.1 to carry out their work in a team;
 - L.O. 2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to use simple digital tools and technologies to communicate, interact and collaborate with others.
 - L.O.2.4 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Apply scientific knowledge to solve automotive engineering problems.
7.2 Specific objectives	Practical skills for simulating the development processes of automotive products. Practical skills for simulating the development processes of automotive products.
	 Practical skills for working with integrated software packages for controlling mechatronic systems of vehicles
	Practical skills of advanced simulation in the design of vehicles
	 Development of modern software, innovative methods, principles and simulation procedures
	 Development of methods for evaluating research and development projects
	Developing a management strategy using modern principles and methods

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Not the case			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Clutch model in Simulink	Presentations, examples,		
The suspension system in Simulink	experiments, research on		
Servo electro-hydraulic control in Simulink	the dynamic simulation of		
Development of a C ++ application for dynamic	the vehicle systems,		
simulation of a vehicle	virtual collision modeling	168	
Group projects	and testing, the sensory		
	and control systems of		
	the vehicles, virtual		
	instrumentation		

Bibliography

1. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.

- 2. https://www.mathworks.com/examples/simulink/category/automotive-applications
- 3. https://www.computoolable.nl

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Through its content and through the elaboration of the thematic portfolio (the study), the masters acquire competences in accordance with the expectations of the epistemic community and of the producers in the car market. The analytical program is in line with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course			
10.5 Seminar/ laboratory/	Completion of simulations in	Oral presentation	100%
project	Simulink		
	Development of the C++		
	program		
	Involvement in practical		
	activities		
	Efficiency in verbal		
	communication		
	(presentation)		
	Completion of simulations in		
	Simulink		

10.6 Minimal performance standard

- Knowledge of Simulink and C++ fundamentals
- Realization of a Simulink simulation for engineering applications
- Realization of practical project
- The marks for project work must be at least 5.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
Dean	Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	2.1 Name of course		Dynamic simulation of vehicle systems in Matlab and C ++					
2.2 Course convenor		Assoc. Prof. Ph. D. Olivia Florea						
			Prof. Ph. D. eng. Florin GÎRBACIA					
2.3 Seminar/ laboratory/ project		Assoc. Prof. Ph. D. Olivia Florea						
convenor	convenor			f. Ph. D. eng. Florin GÎF	RBAC	Α		
2.4 Study year	2	2.5 Semester	3	3 2.6 Evaluation type E 2.7 Course			Content ³⁾	PC
				status			Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/0/2
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/0/28
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					9
Additional documentation in libraries, specialized electronic platforms, and field research					14
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					7
Tutorial					6
Examinations					4
Other activities					4

3.7 Total number of hours of student activity	
3.8 Total number per semester	100
3.9 Number of credits ⁵⁾	4

4. Prerequisites (if applicable)

4.1 curriculum-related	Knowledge of the vehicle dynamics
4.2 competences-related	Operating with fundamental concepts of engineering sciences.
	MATLAB Fundamentals

5. Conditions (if applicable)

` ' ' ' '	
5.1 for course development	• projector
	• lecture notes
	recommended bibliography
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers
	• lecture notes
	recommended bibliography

6. Specific competences and learning outcomes

- Cp1. Design and execute the virtual model of a product
 - L.O.1.1 The graduate has the ability to build complex mathematical models, to translate technical specifications and performance requirements into equations and algorithms that describe the behavior of an automotive system or component.
 - L.O. 1.2 The graduate has the ability to prepare models for simulation: and to perform numerical simulations, to interpret the results.
 - L.O.1.3 The ability to run various types of simulations (structural, thermal, fluidic, etc.) and to critically analyze the results obtained, identifying potential problems or optimization opportunities.
 - L.O.1.4 The graduate has the ability to optimize the product design based on the simulation results to improve the performance, reliability or efficiency of an automotive component or system.
 - L.O.1.5 The graduate has the ability to effectively communicate the results of modeling and simulation.
 - L.O.1.6 The graduate has the ability to integrate various software tools and manage data transfer between them.
 - L.O.1.7 The graduate will demonstrate autonomy in choosing appropriate modeling tools and methods.
 - L.O.1.8 The graduate will demonstrate responsibility for the accuracy and validity of the created models, recognizing the limitations of numerical models and the importance of their validation through experimental data or other methods.
 - L.O.1.9 The graduate will demonstrate a proactive attitude in solving problems, by identifying and addressing technical challenges related to modeling and simulation, seeking innovative and efficient solutions.
- Cp2. Design and execute the virtual model of a product
 - L.O.2.1 The graduate will demonstrate in-depth knowledge of the fundamental principles of computational geometry and the mathematical representation of three-dimensional shapes, the differences and applications of wireframe, surface and solid models, as well as the concepts of parametric and direct modeling.
 - L.O.2.2 The graduate has the ability to fluently use CAE/CAD software to create 3D models: This includes modeling complex parts, assemblies, generating technical drawings and applying geometric constraints and relationships.
 - L.O.2.3 The graduate has the ability to optimize product design based on simulation results to improve the performance, reliability or efficiency of an automotive component or system.
 - L.O.2.4 The graduate has the ability to integrate various software tools and manage data transfer between them
 - L.O.2.5 The graduate will demonstrate autonomy in choosing appropriate modeling tools and methods.
 - L.O.2.6 The graduate will demonstrate a proactive attitude in solving problems, by identifying and addressing technical challenges related to modeling and simulation, seeking innovative and effective solutions.
- Cp3. Uses application-specific interfaces
 - L.O.3.1 The graduate can evaluate and choose platforms, programming languages, and software technologies suitable for automotive industry projects.
 - L.O.3.2 The graduate has the ability to understand and apply the principles of programming and software development technologies in the automotive industry.
 - L.O.3.3 The graduate has the ability to manage automotive software development projects, including planning, budgeting, and monitoring progress.

Transversal competences

- Ct1. Self-driving skills and competencies
 - L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
 - L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
 - L.O.1.3 to show initiative, to be proactive,
 - L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
 - L.O.1.5 identify problems and make decisions to solve them;
 - L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
 - L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
- Ct2. Social and communication skills and competencies
 - L.O.2.1 to carry out their work in a team;
 - L.O. 2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to use simple digital tools and technologies to communicate, interact and collaborate with others.
 - L.O.2.4 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Understanding the principles and potential for using advanced Matlab and			
	C++ Integrated Development Environments for automotive design.			
	Understand and gain advanced knowledge required to develop applications			
	for dynamic simulation of vehicle systems based on Matlab and C++.			
	Understanding how to apply basic modeling techniques and tools to develop			
	Simulink block diagrams			
7.2 Specific objectives	Learning of knowledge for creating dynamic simulation of vehicle systems			
	required in automotive design;			
	Learning knowledge for the development of Matlab and C++ software			
	applications;			
	Acquirement of practical skills for automotive design applications through			
	the use of Matlab and C++ programming environments.			
	Creating Simulink models and simulating system dynamics			
	Modeling continuous-time, discrete-time, and hybrid systems			
	Building hierarchy into a Simulink model			

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Introduction. The purpose of the course.	Interactive lecture	2	
Introduction to C++. Terminology, definitions and			
features of C++. Technologies available for dynamic			
simulation of vehicle systems.			
Basics of the C++ language. Getting Started with	Interactive lecture	8	
Microsoft Visual Studio IDE. Variables, data types,			
expressions, operators, pointers, networks,			
functions and structures in C++. Case studies for			
dynamic simulation.			
Vehicle dynamics problems solved in C++. Concepts	Interactive lecture	4	

and principles in object-oriented programming:			
Classes, objects, class hierarchies, Polymorphism.			
Case studies for dynamic simulation.			
Introduction to Simulink	Interactive lecture	4	
Simulink: Creating and Simulating a Model.	Interactive lecture	6	
Modeling Programming Constructs. Modeling			
Discrete Systems. Modeling Continuous Systems			
Simulink: Solver Selection. Developing Model	Interactive lecture	4	
Hierarchy. Modeling Conditionally Executed			
Algorithms. Combining Models into Diagrams			

Bibliography

- 1. Ruxandra Stanescu, Florin Girbacia, Cristian Postelnicu, Programarea calculatoarelor si limbaje de programare. Indrumar de laborator.,Ed. Universitatii Transilvania din Brasov, ISBN 978-606-19-1596-5, 2023.
- 2. Talabă, D., Amditis, A. Product Engineering, Tools and Methods Based on Virtual Reality. Editura Springer, 2007.
- 3. Gîrbacia, F. Talabă, D., Tehnologiile realității virtuale:lucrări practice, Editura Universită ii Transilvania Braşov, 2012.
- 4. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016
- 5. Girbacia, F. Cercetari teoretice si experimentale privind dezvoltarea de interfete multimodale de realitate virtuala pentru aplicatii de proiectare asistata de calculator, Teza de doctorat, Universitatea Transilvania Brasov, 2007.
- 6. H. Schildt: C++. Editura Manual complet, Teora, 2000
- 7. Learning Simulink, COPYRIGHT 1999 2004 by The MathWorks, Inc.
- 8. Introduction to Simulink, University College of Southeast Norway, http://home.hit.no/~hansha/documents/matlab/training/Introduction%20to%20Simulink/

Introduction%20to%20Simulink.pdf

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number of hours	Remarks
Getting Started with Microsoft Visual Studio C++	Interactive lecture,	2	
IDE	exercises and examples,		
	individual work		
Development of a C++ application for simulating a	Interactive lecture,	4	
vehicle mechanism using procedural programming	exercises and examples,		
	individual work		
Development of a C++ application for the	Interactive lecture,	4	
simulation of a vehicle mechanism using modular	exercises and examples,		
programming	individual work		
Development of a C++ application for dynamic	Interactive lecture,	4	
simulation of a vehicle using OOP	exercises and examples,		
	individual work		
Engine Model in Simulink	Individual work	2	
Anti-Lock Braking System in Simulink	Individual work	2	
Clutch Engagement Model in Simulink	Individual work	2	
Suspension System in Simulink	Individual work	2	
Hydraulic Systems in Simulink	Individual work	2	
Automatic Transmission Control in Simulink	Individual work	2	
Electrohydraulic Servo Control in Simulink	Individual work	2	

Bibliography

- 1. Ruxandra Stanescu, Florin Girbacia, Cristian Postelnicu, Programarea calculatoarelor si limbaje de programare. Indrumar de laborator,Ed. Universitatii Transilvania din Brasov, ISBN 978-606-19-1596-5, 2023.
- 2. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov, 2016.
- ${\it 3. } https://www.mathworks.com/examples/simulink/category/automotive-applications$

https://www.computoolable.nl

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Theoretical and practical approaches demonstrate the latest programming IDE for automotive design. The curriculum is consistent with similar fields addressed to universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Course	Ability to operate with assimilated knowledge	Written exam	50%
10.5 Seminar/ laboratory/ project	Ability to apply in practice the assimilated knowledge	Project	50%

10.6 Minimal performance standard

Development of a project that uses principles and methods specific to the field of mechanical engineering:

- Knowledge of the fundamental elements of Matlab and C++, solving dynamic simulation task.
- Implement a dynamic vehicle system model in Simulink.
- The grades obtained for the project and exam must be at least 5

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Automotive energy management					
2.2 Course conve	2.2 Course convenor Postelnicu Cristian-Cezar							
2.3 Seminar/ lab	2.3 Seminar/ laboratory/ project Postelnicu Cristian-Cezar							
convenor								
2.4 Study year	2	2.5 Semester	1	2.6 Evaluation type	V	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/0/2
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/0/28
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					
Additional documentation in libraries, specialized electronic platforms, and field research					
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					2
Tutorial					
Examinations					
Other activities					2

3.7 Total number of hours of student activity	
3.8 Total number per semester	100
3.9 Number of credits ⁵⁾	4

4. Prerequisites (if applicable)

4.1 curriculum-related	Graduation of Applied Electronics course		
4.2 competences-related	Knowledge and abilities to work in one or more standard or high-level		
	programming languages (e.g., Excel, Matlab)		

5. Conditions (if applicable)

5.1 for course development	Lecture room with multimedia equipment and minimum 25 places
5.2 for seminar/ laboratory/	Lecture room with multimedia equipment, electronic components and materials,
project development	and minimum 25 places

6. Specific competences

6. Specific cor	npetences
	Cp1. Competencies for performing practical tests and determinations
	L.O.1.1 To perform experimental, environmental, and operational tests on models, prototypes or
	systems and equipment to test their resistance and capabilities in normal and extreme conditions;
	L.O. 1.2 Interpret and analyze data collected during testing to formulate conclusions, new insights, or
	solutions.
	L.O.1.3 To record data that has been specifically identified during previous trials, to verify that trial
	results produce specific results;
	L.O.1.4 To collect data and statistics to test and evaluate to generate statements and predictions of
	patterns, to discover useful information in the decision process;
	L.O.1.5 To compare the performance of alternative vehicles based on selected factors;
	Cp2. Software design and development capability
Ñ	L.O.2.1. to develop software for motor vehicles and related systems;
nce	L.O. 2.2 understand and apply the principles of programming and software development technologies
)ete	in the automotive industry;
1 duc	L.O.2.3 to evaluate and choose suitable platforms, programming languages and software
al co	technologies for projects in the automotive industry;
io	L.O.2.4 to develop software applications to improve the functionality, performance and safety of
Professional competences	motor vehicles;
Pro	L.O.2.5 to test and troubleshoot software to ensure the proper and safe operation of vehicle systems;
	Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
	L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness
	to work, respecting their commitments;
	L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to
	make decisions choosing from several alternative possibilities;
	L.O.1.3 to show initiative, to be proactive,
	·
	L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information,
	operating technological installations, tools or digital equipment;
	L.O.1.5 identify problems and make decisions to solve them;
	L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to
	apply them in his day-to-day activity;
	L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
	Ct2. Communication and teamwork skills
	L.O.2.1 to carry out their work in a team;
	L.O. 2.2 to address an audience, give a speech, make a presentation;
	L.O.2.3 to moderate discussions between two or more people, including in situations such as
	workshops, conferences or online events;
	L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with
:es	others.
tenc	L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to
hed	find compromise solutions, resolving conflicts;
ПОЭ	L.O.2.6 to be able to lead others, coordinate a team;
Transversal competences	L.O.2.7 be able to train other team members and organize information, objects and resources;
sver	L.O.2.8 to motivate others, stimulating action;
rans	L.O.2.9 to develop teams, managing time and delegating responsibilities;
F	L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Theoretical and practical training in the energy management of the electrical
	, electronic, and mechatronics systems of the vehicles
7.2 Specific objectives	Development of the ability of the graduate to use various algorithms of
	optimization.
	Development of the working abilities with the latest device in the domain.
	Solving specific problems, paper elaboration and calculation methods

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Introduction	Presentation; Conversation (Use of	2	
2. Batteries. Types, characteristics, integration in the	teaching materials	4	
energetic system of the hybrid vehicle	presented with video		
3. Supercapacitors. Integration in the energetic system	projector)	4	
of the hybrid vehicle	Demonstration (use of		
4. Systems based on supercapacitors and batteries	representative real	4	
5. Combustion fuels, integration in the energetic system for	devices)	2	
large vehicles			
6. Energetic management for hybrid vechiles using neutral		6	
networks			
7. Simulation using Simulink-Matlab		3	
8. Energy management for transport fleets		3	

Bibliography

- 1. Curtis Darrel Anderson, Judy Anderson Electric and hybrid cars: a history, McFarland, 2005.
- 2. Xi Zhang, Chris Mi— Power Systems: Vehicle Power Management: Modeling, Control and Optimization, Springer-Verlag London, 2011
- 3. Andreas Gaede Automotive Electrical Energy Management System, Glyndwr University, 2010

8.2 Seminar/ laboratory/ project	Teaching-learning	Number	Remarks
	methods	of hours	
Project implementation:	Use of specific software	28	
- battery systems for vehicles			
- supercapacitor-based systems for vehicles			
- mixed systems for vehicles			
- optimization of consumption for hybrid vehicles using			
neutral systems			
- simulation of diverse systems using the Simulink - Matlab			
software			
	II	1	

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The curriculum responds to the current requirements regarding the skills that automotive industry specialists must have.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage
		methods	of the final grade
10.4 Course	Written	Written exam	
	- Knowledge of concepts;	The subjects cover	60%
	- The ability to apply the accumulated	the key chapters of	
	knowledge;	the course.	
	- The language appropriate to the		
	subject;		
	- Attitude towards learning		
10.5 Seminar/ laboratory/	Project defend		
project	- Degree of involvement while	- Direct and	40%
	conducting the experiments;	systematic	
	- Rhythm of activity; keeping the	observation;	
	calendar;	- Record progress	
	- Ability to understand phenomena	- Project defend	
10.6 Minimal performance stand	dard	_	

• The final average is calculated only if the student gets a minimum of 5 points at the project defend

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA	Prof.dr.ing. Mihai Duguleana
Dean	Head of departament
Postelnicu Cristian-Cezar	Postelnicu Cristian-Cezar
Course holder	Holder of laboratory

Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: BA/MA/PhD;
- ³⁾ Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of cour	2.1 Name of course			Modelling and virtual collision testing				
2.2 Course convenor Prof. Ph. D. Eng. Nicolae ISI			· ISPAS					
2.3 Seminar/ laboratory/ project			Lec	Lecturer Ph. D. Eng. Ionut Alexandru RADU				
convenor								
2.4 Study year 2 2.5 Semester		3	2.6 Evaluation type	Ε	2.7 Course	Content ³⁾	DC	
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/	0/1/1
				project	
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/	0/14/14
the curriculum				project	
Time allocation					hours
Study of textbooks, course support, bibliography and notes					42
Additional documentation in libraries, specialized electronic platforms, and field research					32
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					14
Tutorial					2
Examinations					4
Other activities					4

3.7 Total number of hours of student activity	
3.8 Total number per semester	150
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	•	strength of materials, materials technology, computer assisted design, finite element analysis, passive vehicle safety, vehicle calculation and construction, vehicle dynamics
4.2 competences-related	•	Operating with fundamental concepts of engineering sciences, Matlab, SIMULINK, advanced using computer skils

5. Conditions (if applicable)

5.1 for course development	• projector
	• lecture notes
	recommended bibliography
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers

6. Specific competences and learning outcomes

C.3 Competencies for carrying out tests and practical determinations

L.O.3.1 To perform experimental, environmental and operational tests on models, prototypes or on systems and equipment to test their resistance and capabilities in normal and extreme conditions;

L.O.3.2 To interpret and analyze data collected during testing, to formulate conclusions, new perspectives or olutions.

L.O.3.3 To record the data that was specifically identified during the previous tests, to check if the results of he test produce specific results;

L.O.3.4 To collect data and statistics in order to test and evaluate in order to generate statements and redictions of patterns, with the aim of discovering useful information in the decision process;

L.O.3.5 To simulate and test mechatronic units using appropriate equipment;

L.O.3.8 To test mechatronic units using appropriate equipment, collecting and analyzing data. To monitor and valuate the performance of the system and take measures, if necessary.

CP.4 Competences to carry out scientific research.

L.O.4.2 To gather information about current trends and styles regarding vehicles and the need for new products or services;

L.O.4.3 To prepare reports that describe the results and processes of scientific or technical research or valuate its progress. These reports help researchers keep up with recent discoveries;

L.O.4.4 To prepare research documents or give presentations to report the results of an ongoing research project, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results;

L.O.4.7 To manage research data;

L.O.4.8 To operate scientific research and laboratory equipment;

L.O.4.9 To synthesize information, critically interpret and summarize new and complex information from arious sources;

C.5 Ability to design and develop software

L.O.5.5 to test and debug software to ensure the proper and safe operation of vehicle systems;

C.6 Skills to use CAD-CAM-CAE systems

L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimization of an industrial drawing or model;

L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.

C.8 The ability to improve safety and comply with technical equipment safety standards

L.O.8.1 inspect equipment used during industrial activities, such as manufacturing or construction equipment, o ensure that the equipment complies with safety and environmental legislation.

L.O.8.2 combine mechanical, electrical, electronic, software and safety engineering to design motor vehicles uch as trucks, vans and cars.

L.O.8.3 to apply the basic security standards and technical standards specific to equipment to prevent risks related to the use of technical equipment at work.

competences

Transversal

Professional competences

Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and professional independence

L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;

F03.2-PS7.2-01/ed.3, rev.6

- L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
- L.O.1.3 to show initiative, to be proactive,
- L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
- L.O.1.5 identify problems and make decisions to solve them;
- L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
- L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
- Ct2. Communication and teamwork skills
 - L.O.2.1 to carry out their work in a team;
 - L.O. 2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops, conferences or online events;
 - L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
 - L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find compromise solutions, resolving conflicts;
 - L.O.2.6 to be able to lead others, coordinate a team;
 - L.O.2.7 be able to train other team members and organize information, objects and resources;
 - L.O.2.8 to motivate others, stimulating action;
 - L.O.2.9 to develop teams, managing time and delegating responsibilities;
- L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Understanding the principles and potential for using advanced PC-			
	CrashIntegrated Development Environments for automotive design.			
	Understand and gain advanced knowledge required to develop applications			
	for dynamic simulation of vehicle systems based on Matlab and C++.			
	 Understanding how to apply basic modeling techniques and tools to develop 			
	Simulink block diagrams			
7.2 Specific objectives	Learning of knowledge for creating dynamic simulation of vehicle systems			
	required in automotive design;			
	Learning knowledge for the development of PC-Crash software applications;			
	Acquirement of practical skills for automotive design applications through			
	the use of PC-Crash programming environments.			
	Creating Simulink models and simulating system dynamics			
	Modeling continuous-time, discrete-time, and hybrid systems			
	Building hierarchy into a Simulink model			

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Physical-mathematical models used to study vehicle collisions. Legislation Used to Evaluate Car Performance in Collisions	Exposure, plans, figures, schemes, video elements	6 hours	
Implementation of software and physical-mathematical models used by car collision analysis. Package software used to analyze and model collisions involving vehicles. Software used to	Exposure, plans, figures, schemes, video elements	4 hours	

analyze and model collisions involving vehicles			
Modeling vehicle-to-vehicle accidents	Exposure, plans, figures, schemes, video elements	6 hours	
Elements of Biomechanics. Models of occupants and pedestrians. Multibody systems.	Exposure, plans, figures, schemes, video elements	4 hours	
Simulation of vehicle-pedestrian accidents	Exposure, plans, figures, schemes, video elements	2 hours	
FE analysis for virtual modeling of plastic deformation of some elements in the vehicle structure.		4 hours	
Virtual tests for deformable parts of vehicle body.	Exposure, plans, figures, schemes, video elements	2 hours	

Bibliografie

- 1. Şoica, A., Siguranța pasivă a autovehiculelor, Editura Universității Transilvania din Brașov, Brașov 2010, ISBN 978-973-598-739-8.
- 2. Beleş, H., Şoica, A., Siguranța activă și pasivă a autovehiculelor, Editura Universității din Oradea, Oradea 2011, ISBN 978-606-10-0651-9.
- 3. Ispas, N., Şoica, A., Beleş, H., Expertiza si dinamica accidentelor rutiere, Editura Universității din Oradea, Oradea 2011, ISBN 978-606-10-0652-6.
- 4. Şoica, A., Chiru, A., Ispas, N., Huminic, A., Caroserii şi sisteme pentru siguranță pasivă I, Editura Universității Transilvania din Brașov, Brașov 2005, ISBN 973 635 460 1.
- 5. Şoica, A., Caroserii şi sisteme pentru siguranța pasiva II, Editura Universității Transilvania din Brașov, Brașov 2008, ISBN 978 973 598 354 3.
- 6. Câmpian, V.O., Şoica, A., Încercarea și omologarea autovehiculelor, Editura Universității Transilvania din Brașov, ISBN 973 735 306 0 Brașov, 2004
- 7. Şoica, A., s.a., Caroserii și sisteme pentru siguranța pasivă, Reprografia Universității Transilvania din Brașov 2003.
- 8. Nahum, A.M., Melvin, J.W., Accidental Injury, ed. Springer Verlag, 1996.
- 9. PC-CRASH 12.0 Manual de Utilizare, DSD- Dr. Steffan Datentechnik, Austria, 2018.
- 10. ***Standarde internaționale pentru manechine antropometrice destinate încercărilor de coliziune la impact lateral. ISO/TR 9790-1-6.
- 11. ***Standarde internaționale privind omologarea și testarea la coliziune a autovehiculelor (R 29 ECE ONU, R ECE ONU, R 42 ECE ONU, R 96 ECE ONU, NHTSA 214).

8.2 Seminar / laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Vehicle to vehicle accident modeling	Using PC-Crash 15.0	8	
	software		
Vehicle - pedestrian accident modeling	Using PC-Crash 15.0	4	
	software		
Modeling occupant / pedestrian behavior using	Using PC-Crash 15.0	4	
multibody systems	software		
Calculation of injury criteria for occupants on	PC_Crash, MathCad	2	
various body segments.			
Determination of the deformations and overall	PC_Crash, MathCad	4	
stiffness of the structure by virtual modeling of the			
collision tests			

Determination by FEA of the deformations of some	PC_Crash, MathCad	4	
elements of the car's resistance structure			
Student final evaluation	PC_Crash, MathCad	2	
Vehicle to vehicle accident modeling	Using PC-Crash 15.0	8	
	software		
Vehicle - pedestrian accident modeling	Using PC-Crash 15.0	4	
	software		
Modeling occupant / pedestrian behavior using	Using PC-Crash 15.0	4	
multibody systems	software		
Calculation of injury criteria for occupants on	PC_Crash, MathCad	2	
various body segments.			
Determination of the deformations and overall	PC_Crash, MathCad	4	
stiffness of the structure by virtual modeling of the			
collision tests			
Determination by FEA of the deformations of some	PC_Crash, MathCad	4	
elements of the car's resistance structure			
Student final evaluation	PC_Crash, MathCad	2	

Bibliography

Şoica, A., Siguranța pasivă a autovehiculelor, Editura Universității Transilvania din Brașov, Brașov 2010, ISBN 978-973-598-739-8.

- 2. Beleş, H., Şoica, A., Siguranța activă și pasivă a autovehiculelor, Editura Universității din Oradea, Oradea 2011, ISBN 978-606-10-0651-9.
- 3. Ispas, N., Şoica, A., Beleş, H., Expertiza si dinamica accidentelor rutiere, Editura Universității din Oradea, Oradea 2011, ISBN 978-606-10-0652-6.
- 4. Şoica, A., Chiru, A., Ispas, N., Huminic, A., Caroserii şi sisteme pentru siguranță pasivă I, Editura Universității Transilvania din Brasov, Brasov 2005, ISBN 973 635 460 1.
- 5. Şoica, A., Caroserii şi sisteme pentru siguranța pasiva II, Editura Universității Transilvania din Brașov, Brașov 2008, ISBN 978 973 598 354 3.
- 6. Câmpian, V.O., Şoica, A., Încercarea și omologarea autovehiculelor, Editura Universității Transilvania din Brașov, ISBN 973 735 306 0 Brașov, 2004
- 7. Şoica, A., s.a., Caroserii și sisteme pentru siguranța pasivă, Reprografia Universității Transilvania din Brașov 2003.
- 8. Nahum, A.M., Melvin, J.W., Accidental Injury, ed. Springer Verlag, 1996.
- 9. PC-CRASH 12.0 Manual de Utilizare, DSD- Dr. Steffan Datentechnik, Austria, 2018.
- 10. ***Standarde internaționale pentru manechine antropometrice destinate încercărilor de coliziune la impact lateral. ISO/TR 9790-1-6.
- 11. ***Standarde internaționale privind omologarea și testarea la coliziune a autovehiculelor (R 29 ECE ONU, R 26 ECE ONU, R 42 ECE ONU, R 96 ECE ONU, NHTSA 214).

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

- The requirements of the Romanian Motor Vehicle Engineers Society (SIAR);
- Society of Automotive Engineers (SAE USA) requirements;
- EVU Association Europe;
- SC SCHAEFER Romania SA;
- SC DACIA GROUP RENAULT SA;
- SC FORD Romania SA;
- SC AUTOLIV Romania SA.

Theoretical and practical approaches demonstrate the latest programming IDE for automotive design. The curriculum is consistent with similar fields addressed to universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Ability to operate with assimilated knowledge	Written exam	50%
10.5 Seminar/ laboratory/ project	Ability to apply in practice the assimilated knowledge	Project	50%

10.6 Minimal performance standard

Development of a project that uses principles and methods specific to the field of mechanical engineering:

- Knowledge of the fundamental elements of PC_Crash solving dynamic simulation task.
- Implement a dynamic vehicle system model in Simulink.
- The grades obtained for the project and exam must be at least 5

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dL.Ong. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
	Head of Department
Dean	
Prof. Ph. D. Eng. Nicolae ISPAS	Lecturer Ph. D. Eng. Ionut Alexandru RADU
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Automotive Design

2. Data about the course

2.1 Name of course		Vir	Virtual manufacturing in automotive technologies					
2.2 Course holder		pr	prof.dr.ing. BUTNARIU Silviu					
2.3 Seminar/ laboratory/ project		pr	prof.dr.ing. BUTNARIU Silviu					
convenor								
2.4 Study year	2	2.5 Semester	1	2.6 Evaluation	E	2.7 Discipline	Content ²⁾	PC
				type		status	Attendance type ³⁾	EC

3. Total estimated time (hours of teaching activities per semester)

		<u>. </u>			
3.1 Number of hours per	4	out of which: 3.2 course	2	3.3 seminar/ laboratory/	0/0/2
week				project	
3.4 Total number of hours in	56	out of which: 3.5 course	28	3.6 seminar/ laboratory/	0/0/28
the curriculum				project	
Time allocation					hours
Study of textbooks, course support, bibliography and notes					40
Additional documentation in libraries, specialized electronic platforms, and field research					30
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					22
Tutorial					
Examinations					2
Other activities					

3.7 Total number of individual learning hours		
3.8 Total number per semester		
3.9 Number of credits ⁵⁾	6	

4. Prerequisites (if applicable)

4.1 to the curriculum	 technical drawing, general concepts of physics, mechanics, strength of materials, machine parts, machine tools, manufacturing technologies, robotics, virtual reality.
4.2 to competences	 design manufacturing technologies for road vehicles;

5. Conditions (if applicable)

or continuous (in applicable)	
5.1 of course development	classroom, projector
5.2 of seminar/ laboratory/	computer room, dedicated software, testing equipment (flexible manufacturing
project development	cell), machine parts; laboratory guide

F03.2-PS7.2-01/ed.3, rev.6

Professional competences

- C.3 Competencies for carrying out tests and practical determinations
- L.O.3.1 To perform experimental, environmental and operational tests on models, prototypes or on systems and equipment to test their resistance and capabilities in normal and extreme conditions:
- L.O.3.2 To interpret and analyze data collected during testing, to formulate conclusions, new perspectives or solutions.
- L.O.3.3 To record the data that was specifically identified during the previous tests, to check if the results of the test produce specific results;
- L.O.3.4 To collect data and statistics in order to test and evaluate in order to generate statements and predictions of patterns, with the aim of discovering useful information in the decision process;
- L.O.3.5 To simulate and test mechatronic units using appropriate equipment;
- L.O.3.8 To test mechatronic units using appropriate equipment, collecting and analyzing data. To monitor and evaluate the performance of the system and take measures, if necessary.
- CP.4 Competences to carry out scientific research.
- L.O.4.2 To gather information about current trends and styles regarding vehicles and the need for new products or services;
- L.O.4.3 To prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers keep up with recent
- L.O.4.4 To prepare research documents or give presentations to report the results of an ongoing research project, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results;
- L.O.4.7 To manage research data;
- L.O.4.8 To operate scientific research and laboratory equipment;
- L.O.4.9 To synthesize information, critically interpret and summarize new and complex information from various sources;
- C.5 Ability to design and develop software
- L.O.5.5 to test and debug software to ensure the proper and safe operation of vehicle systems;
- C.6 Skills to use CAD-CAM-CAE systems
- L.O.6.1 the use of computer-aided design (CAD) systems to contribute to the creation, modification, analysis and optimization of an industrial drawing or model;
- L.O.6.3 using computer-aided engineering programs to perform stress analyzes for engineering projects.
- C.8 The ability to improve safety and comply with technical equipment safety standards
- L.O.8.1 inspect equipment used during industrial activities, such as manufacturing or construction equipment, to ensure that the equipment complies with safety and environmental legislation.
- L.O.8.2 combine mechanical, electrical, electronic, software and safety engineering to design motor vehicles such as trucks, vans and cars.
- ..0.8.3 to apply the basic security standards and technical standards specific to equipment to
- Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and professional independence
- L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;
- L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
- L.O.1.3 to show initiative, to be proactive,
- L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
- L.O.1.5 identify problems and make decisions to solve them;
- L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
- L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
- Ct2. Communication and teamwork skills
- L.O.2.1 to carry out their work in a team;
- L.O. 2.2 to address an audience, give a speech, make a presentation;
- L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops, conferences or online events;
- L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with
- L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find compromise solutions, resolving conflicts;

7. Discipline objectives (resulting from the specific competences to be acquired)

7.1 General discipline objective	Thorough theoretical and applied technologies and virtual reality techniques and / or augmented		
	Thorough theoretical and applied in the design, manufacture, testing and maintenance of motor development		
7.2 Specific objectives	Theoretical and practical knowledge about the structure, design and design devices and software modules for RV and AR. Practical skills of operating systems and hardware-software operating RV.		
	Theoretical and practical knowledge related to all stages of product development (concept, design, manufacture, operation) practical skills simulation of automotive product development		

8. Content

8. Content			
8.1 Course	Teaching methods	Hours	Remarks
 Getting on the production of goods. 	Interactive course,	2	
2. Working machines. Classification of machine tools.	exposure to multimedia.	2	
3. Conventional machine tools. Manufacturing processes.	materine dia.	2	
4. General principles of technological processes.		2	
5. About the concept of virtual manufacturing		2	
6. Software used in virtual manufacturing		2	
7. Work machine control		2	
8. CNC of machine tools		2	
9. Command and control systems for machine tools;		2	
10. CNC Manual programming		2	
11. Software used to control CNC machine tools;		2	
12. Flexible manufacturing cells		2	
13. Using the software CAD / CAM		2	
14. Design and virtual manufacturing using dedicated		2	
software			

Bibliography

- Morar, Liviu Maşini, roboti si echipamente pentru sisteme flexibile de fabricație, curs, Universitatea Tehnica din Cluj Napoca, 2006.
- Gyenge Cs. Frățilă D., Ingineria fabricatei, curs Universitatea Tehnică din Cluj-Napoca, Facultatea Construcții de Maşini, 2004.
- Delmia software Documentation (http://www.3ds.com/support/download-documentation/resource-library/)

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Hours	Remarks
1. Technologies for manufacturing automotive components	methods	2	
2. Identification and classification of CNC machine tools. The axis		2	
control machine			
3. Presentation of CNC machine tools, types of control panels.		2	
Identification codes			
4. Used software for commands of CNC machine tools. Manual	Language through	2	
programming of CNC machine tools (G-code)	Learning through		Moddy
5. Processing simulation of machine parts on CNC machine using	problem / explanation,	4	Weekly
specialized software. Using the software CAD / CAM.	demonstration, case		
Transformation and transmission CAM programs to CNC machine tools.	study, conducting guided		
	, ,		
6. Visit an automotive production plant (4 hrs)	and independent	2	
	applications.		
7. Virtual operation system for CNC machine tools (mil land turn)		2	

8. Virtual operation system for CNC machine tools using G code (ISO)	2	
9. Virtual operation system for industrial robots	2	
10. Automatic tracking of the parts flow in the auxiliary system of a flexible	2	
11. Virtual operation system for a flexible manufacturing cell	2	
12. Organizing the fabrication flow using specialized software	2	
13. Evaluation	7	

Bibliography:

- Delmia software Documentation (http://www.3ds.com/support/download-documentation/resource-library/);
- Technical book CNC EMCO
- Technical book SINUMERIK

9. Corroboration of the discipline content with the expectations of the epistemic communities' representatives, the professional associations, and representative employers for the study programme

In corroboration with Industrial Companies interests. A large number of representative employers recognize that modeling and simulation, computer-aided design (CAD) engineering methods (CAE) and computer aided manufacturing (CAM) are valuable tools in development to optimize the vehicle design and manufacture, as well as minimize risks

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade		
10.4 Course	An ability to identify, formulates, and solves engineering problems.	Written examination	50%		
	Course activity	Are registered in the course.	10%		
10.5 Seminar/ laboratory/ project	Practical problems abilities	Practical work/oral presentation	40%		
10.6 Minimal performar	nce standard				
Mark 6 for laboratory. Correct operation of the fundamental concepts in the field of theoretical and applied discipline.					

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA	Prof.dr.ing. Mihai Duguleana
Dean of Faculty of Mechanical Engineering	Head of Departament Automotive and
	Transportation Engineering
Prof.dr.ing. Silviu BUTNARIU	Prof.dr.ing. Silviu BUTNARIU
Course holder	Holder of seminar/ laboratory

Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: BA/MA/PhD;

- Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the MA level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);

5) One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course		Sensory and control systems of vehicles						
2.2 Course convenor		Lec	Lecturer PhD Eng. Postelnicu Cristian-Cezar					
2.3 Seminar/ laboratory/ project		Lec	Lecturer PhD Eng. Postelnicu Cristian-Cezar					
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	Ε	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 seminar/ laboratory/ project	0/2/0
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 seminar/ laboratory/ project	0/14/0
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes 4					40
Additional documentation in libraries, specialized electronic platforms, and field research					28
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					20
Tutorial					4
Examinations					2
Other activities					0

3.7 Total number of hours of student activity	
3.8 Total number per semester	
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	Applied electronics
4.2 competences-related	•

5. Conditions (if applicable)

5.1 for course development	Lecture room with multimedia equipment and minimum 25 places
5.2 for seminar/ laboratory/	Lecture room with multimedia equipment, electronic components and materials,
project development	and minimum 25 places

6. Specific competences and learning outcomes

CP.1 Adjusts product designs

L.O.1.1.4 The graduate has the ability to study, interpret and capitalize on technical resources specific to the automotive industry;

C.3 Anticipates changes in automotive technology

L.O.3.1.1. The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.

C.5 – Automobile construction

L.O.5.1.2. The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.

C.6 Controls production

L.O.6.1.1. The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.

L.O.6.3.1. The graduate demonstrates autonomy in learning on issues specific to the field.

C.7 Conducts market research

L.O.7.1.1. The graduate analyzes and argues theoretical, experimental results and technical documentation associated with the field of automotive engineering.

C.8 Conducts scientific research

L.O.8.2.1 The graduate is able to operate scientific and laboratory research equipment;

C.12 Designs and executes the virtual model of a product

L.O.12.2.6 The graduate has the ability to effectively communicate the results of modeling and simulation.

L.O.12.2.7 The graduate has the ability to integrate various software tools and manage data transfer between them.

C.16 Designs the user interface

L.O.16.1.3 The graduate has in-depth knowledge of specific programming techniques and languages.

L.O.16.2.1 The graduate has the ability to analyze the requirements and project specification.

Transversal competences

Professional competences

CT.1 Integration skills in specific workplace activities and technical skills, in conditions of autonomy and professional independence

L.O.1.9 apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment

CT.2 Communication and teamwork skills

L.O.2.1 to carry out their work in a team

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	•	Acquiring knowledge and forming basic skills in designing and maintaining
		auto control systems.

7.2 Specific objectives	Knowledge of the types of control systems in vehicles;
	Understanding the role of control systems in vehicles and their operating
	principles;
	Knowledge of the structure of the control systems and the functional role of
	the components;
	Acquiring practical and practical skills in the field of electrical measurements.

8. Content

8.1 Course	Teaching methods	Number of	Remarks
		hours	
1. Introduction to computerized systems in motor vehicles:	Presentation;	4	
- Typical structure of control systems;	Conversation (Use of		
- The specifics of automotive control systems;	teaching materials		
- Functions of control systems;	presented with video		
- Requirements and performance of control systems in motor	projector)		
vehicles.	Demonstration (use of		
2. Sensors used in motor vehicles:	representative real	10	
Design, operation and destination of sensors:	devices)		
- Pressure;			
- Acceleration (accelerometers);			
- Oxygen (lambda);			
- Speed;			
- Position / Distance			
- Rotation (gyroscopes);			
- temperature;			
- Humidity;			
- Light.			
3. Data communication in motor vehicles:		8	
- Types of networks used in motor vehicles;			
- CAN network;			
- LIN network			
- The FlexRay Network.			
4. Control systems in motor vehicles:		6	
- Traction control system;			
- Dynamics control system;			
- Safety and comfort control system			
- Communication and navigation system;			
- Control system for information and entertainment;			
- The diagnosis system.			

Bibliography

- 1. De Silva, C.W., Sensors and Actuators Engineering System Instrumentation, Taylor and Francis Inc., 2015
- 2. D. Patranabis, Sensors and Transducer, PHI Learning Pvt. Ltd., 2004.

ISBN 973-9428-96-9,

- 3. Drugă, C.,N., Cojocaru, A., Senzori și traductoare electrice, Vol.I și II, Editura Universită ii "Transilvania" Brașov, 2009.
- 4. A.C.Stanca, Senzori si traductoare, curs în format electronic, UnivTB, 2012.
- 5. A.C.Stanca, Contribu ii la sistemele de control ale autovehiculelor ce utilizează supercondensatoare, teză de doctorat, UniTBV, 2010.
- 6. Turner, J., Automotive Sensors, Momentum Press, 1 March 2009, ISBN: 1606500090.

7. NI Tutorial "FlexRay Automotive Communication Bus Overview	v" http://zone.ni.com/devzone/cda/tut/p/id/3352.
---	--

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of	Remarks
	methods	hours	
1. Study of pressure sensors used in motor vehicles	Demonstration,	2	
2. Study of acceleration sensors used in motor vehicles	experiment, direct action,	2	
3. Study of temperature and position sensors used in motor	problem-solving	4	
vehicles			
4. Study of DC motors and step-by-step		2	
5. Study of non-critical control systems (windscreen, doors,		4	
lighting, mirrors, etc.)			
	·		

Bibliography

- 1. A.C.Stanca, Senzori si traductoare, Îndrumar de laborator în format electronic, UnivTB, 2012
- 2. S. Barrett, D. Pack, "Atmel AVR Microcontroller Primer: Programming and interfacing", Morgan&Claypool, 2008.
- 3. J. Oxer, H. Blemings, Practical Arduino: Cool Projects for Open Source Hardware (Technology in Action), Apress, 2009

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The curriculum responds to the current requirements regarding the skills that automotive industry specialists must have.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3
			Percentage
			of the final
			grade
10.4 Course	Written	Written exam	
	Knowledge of concepts;	The subjects cover the key	70%
	- The ability to apply the accumulated	chapters of the course:	
	knowledge;	sensors, actuators,	
	- The language appropriate to the subject;	communications, and	
	- Attitude towards learning	automotive control systems.	
10.5 Seminar/	Laboratory defend		
laboratory/ project	- Degree of involvement while conducting the	- Direct and systematic	30%
	experiments;	observation;	
	- Rhythm of activity; keeping the calendar;	- Record progress	
	- Attitude towards laboratory activities;	- Laboratory defend	
	- Ability to understand phenomena		

10.6 Minimal performance standard

The final average is calculated only if the student gets a minimum of 5 points at the laboratory defend and minimum 5 points for the written exam.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof. PhD Eng.Ioan Calin ROSCA	Prof. PhD Eng. Mihai DUGULEANA
Dean	Head of Department
J. Rosca	
Lecturer PhD Eng. Cristian-Cezar POSTELNICU	Lecturer PhD Eng. Cristian-Cezar POSTELNICU
Course holder	Holder of laboratory
Estelica	Estelnica

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Automotive Design

2. Data about the course

2.1 Name of course			Αι	Automotive mechatronics systems				
2.2 Course holder			pr	prof.dr.ing. MOGAN Gheorghe				
2.3 Seminar/ laboratory/ project			pr	prof.dr.ing. MOGAN Gheorghe				
convenor								
2.4 Study year	2	2.5 Semester	1	2.6 Evaluation	E	2.7 Discipline	Content ²⁾	SC
				type		status	Attendance type ³⁾	EC

3. Total estimated time (hours of teaching activities per semester)

					
3.1 Number of hours per	4	out of which: 3.2 course	2	3.3 seminar/ laboratory/	0/2/0
week				project	
3.4 Total number of hours in	28	out of which: 3.5 course	28	3.6 seminar/ laboratory/	0/28/0
the curriculum				project	
Time allocation					hours
Study of textbooks, course support, bibliography and notes			40		
Additional documentation in libraries, specialized electronic platforms, and field research			28		
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays			20		
Tutorial					4
Examinations				2	
Other activities					

3.7 Total number of individual learning hours	
3.8 Total number per semester	150
3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 to the	Navigate the courses: Fundamentals of Electronics and Computer, Virtual instrumentation.
curriculum	
4.2 to	Results after completion of the above courses.
competences	

5. Conditions (if applicable)

5.1 of course development	Classroom equipped with multimedia equipment and minimum capacity of 25
	seats
5.2 of seminar/ laboratory/	• Laboratory room, with board, equipped with specific systems, minimum 13
project development	seats.

6. Specific competences

	CP. 2. Competences in the design of systems, equipment and vehicle components
	e competences and design of systems, equipment and semine components
	R.I.2.2 the use of advanced concepts, techniques and principles regarding the design of modern
	systems and equipment for motor vehicles
	CP. 3.
es	R.I.3.8 To test mechatronic units using appropriate equipment, collecting and analyzing data. To
enc	monitor and evaluate the performance of the system and take measures, if necessary.
pet	CP. 4 Competences to carry out scientific research
L 00	R.I.4.8 To operate scientific research and laboratory equipment
Professional competences	CP. 5 Software design and development capability
ssiol	R.I.5.2. understand and apply the principles of programming and software development
ofes	technologies in the automotive industry
P	R.I.5.3 to evaluate and choose suitable platforms, programming languages and software
	technologies for projects in the automotive industry
	CP. 8 The ability to improve safety and comply with technical equipment safety standards
	R.I.8.2 combine mechanical, electrical, electronic, software and safety engineering to design motor
	vehicles such as trucks, vans and cars
	CT.1 Integration skills in specific workplace activities and technical skills, in conditions of autonomy and
	professional independence
ial	R.I.1.9 apply scientific, technological and engineering knowledge, processing complex information,
vers	operating technological installations, tools or digital equipment
Transversal competences	CT.2 Communication and teamwork skills
	R.I.2.1 to carry out their work in a team

7. Course objectives (resulting from the specific competences to be acquired)

	,
7.1 General	Acquiring knowledge and basic skills training in mechatronic systems design for automotive
discipline	fields.
objective	
7.2 Specific	■ Knowledge of the types of mechatronic systems from auto vehicles;
objectives	■ Understanding the role of automotive mechatronic systems and their operating principles;
	■ Knowledge of mechatronic systems structure and functional role of components;
	■ Design of the uncritical mechatronic systems for vehicles.

8. Content

Teaching methods	Hours	Remarks
Exposure;	1 hour	
Conversation		
(Use of teaching		
materials provided		
with the projector)		
E (Exposure; Conversation Use of teaching materials provided	Exposure; 1 hour Conversation Use of teaching materials provided

			1
2. Mechatronic systems sensors used in motor vehicles:	Exposure;	4 hours	
Construction, operation and destination mechatronic systems sen	Conversation		
to automotive:	(Use of teaching		
- Pressure;	materials provided		
- Acceleration (accelerometers);	with the projector)		
- Oxygen (Lambda);	Demonstration (use		
- Speed;	real devices		
- Position / Distance;	representative)		
- Rotation (gyroscopes);			
3. Actuators used in the automotive mechatronic		3 hours	
systems:			
Construction, operation and destination:			
- DC motors;			
- Stepper motors;			
4.Data communication between mechatronic systems:	Exposure;	3 hours	
- Types of networks used in automotive;	Conversation		
- Networks CAN / K-line;	(Use of teaching		
- LIN networks;	materials provided		
5. Automotive mechatronic control systems:	with the projector)	2 hours	
- Central command and control system (ECU)			
- Traction Control System (TCS / ASR / ABS / ESP / ESC.)			
- System Dynamics Control (VDIM / DSTC);			
- The safety and comfort control (ACC LDWS, airbag, climate);			
- Diagnostic System (ISO 14230-4, ISO 15765-4)			
6. Current trends in the field:		1 hour	
- Mechatronic devices;			
- Full integration (power, analog, digital, sensors, actuators, p	r		
storage, communication);			
Bibliography			
[1] Intelligent Mechatronic Systems Modeling, Control and Diagnos	is Merzouki, R., Samant	aray, A.K., Pat	ł
Ould Bouamama, B. 2013			
[2] Mechatronic Systems: Fundamentals, Rolf Isermann, 2005			
[3] Mechatronic Systems Analysis, Design and Implementation Boul	kas, El-Kébir, Al-Sunni, F	ouad M. 2011	
8.2 Seminar/ laboratory/ proiect	Teaching-learning met	h	Remarks
8.2.1 Laboratory	D	2.1	
1. Study K-line communication system (ISO 14230-4). 2. Study ABS system	_Demonstration	2 hours 2 hours	
3. Study AIRBAG, DSTC systems	experiment,	/ı hours	
4. Study of DC motor and stepper motor	direct action, problems	2 hours	
5. Study of non-critical control systems (climate, windscreen, door	5	4 hours	
mirrors, etc.).			
Bibliography			
[1] Intelligent Mechatronic Systems Modeling, Control and Diag	nosis Merzouki, R., Sar	mantaray, A.K	., Pathak, P
Bouamama, B. 2013			
[2] Mechatronic Systems: Fundamentals, Rolf Isermann, 2005			
[3] Mechatronic Systems Analysis, Design and Implementation Boul	kas, El-Kébir, Al-Sunni, F	ouad M. 2011	

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Research in the field of electronic control of automotive systems;

Testing and approval in the field of car manufacturing;

Diagnosis and repair within the SERVICE units

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage of
		methods	the final grade
10.4 Course	An ability to apply knowledge of mathematics,	Theoretical and	50%
	science, and engineering. An ability to identify,	practical examination –	
	formulates, and solves engineering problems.	project, case study	
10.5 Seminar/	An ability to design a system, component or	Laboratory	15%
laboratory/	process to meet desired needs.		
project	An ability to use techniques, skills, and modern	Applications test,	35%
	engineering tools necessary for engineering	exercises	
	practices; project - case study		

• Participation in the exam is conditional on the complete laboratory work and the promotion of the laboratory colloquium.

10.6 Minimal performance standard

Minimum requirements for 5 - for all assessment activities: to obtain minimum score awarded half of respectively minimum 5. Minimum standards of performance are given by:

- o Diagnosis of the electronic systems of cars using specific equipment.
- o Repair of mechatronic systems by replacing defective modules.
- o Testing the components of mechatronic systems using domain specific stands

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. loan Călin ROȘCA	Prof.dr.ing. Mihai Duguleana
Dean of Faculty of Mechanical Engineering	Head of Departament Automotive and
	Transportation Engineering
Prof.dr.ing. Gheorghe MOGAN	Prof.dr.ing. Gheorghe MOGAN
Course holder	Holder of seminar/ laboratory

Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: BA/MA/PhD;
- ³⁾ Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the MA level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- 4) Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transportation
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course		Practice for research and development I						
2.2 Course convenor								
2.3 Seminar/ laboratory/ project		Pro	Prof. Ph. D. eng. Florin GÎRBACIA					
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	V	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	NCPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	12	out of which: 3.2 lecture	0	3.3 seminar/ laboratory/ project	0/0/12
3.4 Total number of hours in	168	out of which: 3.5 lecture	0	3.6 seminar/ laboratory/ project	168
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					
Additional documentation in libraries, specialized electronic platforms, and field research					
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					
Tutorial					
Examinations					
Other activities					

3.7 Total number of hours of student activity			
3.8 Total number per semester	168		
3.9 Number of credits ⁵⁾	5		

4. Prerequisites (if applicable)

4.1 curriculum-related	•	Elementary concepts of automotive engineering, computer-aided design
4.2 competences-related	•	Operating with fundamental concepts of engineering sciences.

5. Conditions (if applicable)

5.1 for course development	• projector
5.2 for seminar/ laboratory/	• projector
project development	laboratory equipped with computers
	Windows operating system, Matlab

6. Specific competences and learning outcomes

Professional competences

Transversal competences

- C1. Skills for identifying needs for design
 - L.O.1.1 To identify customer needs, using appropriate questions and active listening to identify customer expectations, wishes and requirements according to products and services;
 - L.O.1.2 To interpret the technical requirements of customers, analyzing, understanding and applying the information provided regarding the technical conditions;
 - L.O.1.3 To define technical design requirements, by specifying the technical properties of the goods, materials, methods, processes, services, systems, software and functionalities, by identifying and addressing the specific needs that must be met according to the client's requirements;
 - L.O.1.4 To ensure the connection with the engineers from the other departments to ensure a common understanding and to discuss the design, development and improvement of the products;
 - L.O.1.5 To make design sketches to contribute to the development and communication of design concepts.
- C2 Competences in the design of systems, equipment and vehicle components
 - L.O.2.1 To carry out scientific research, to conceive or create new knowledge by formulating questions in the field by researching, improving or developing concepts, theories, models, techniques, tools, software or operational methods and by using methods and techniques scientific;
 - L.O.2.2 To gather information about current trends and styles regarding vehicles and the need for new products or services;
 - L.O.2.3 To prepare reports that describe the results and processes of scientific or technical research or evaluate its progress. These reports help researchers keep up with recent discoveries;
 - L.O.2.4 To prepare research documents or give presentations to report the results of an ongoing research project, indicating the analysis procedures and methods that led to the respective results, as well as possible interpretations of the results;
 - L.O.2.5 To synthesize information, critically interpret and summarize new and complex information from various sources;
 - L.O.2.6 To interact professionally in research and professional environments;
 - L.O.2.7 To apply systematic research methods and to communicate with the relevant parties to find specific information, evaluating the research results in view of the relevant estimation of the information, as well as the related technical systems and their evolutions;
 - L.O.2.8 To provide proof of in-depth knowledge and complex understanding of the research field, including responsible research, ethical principles and scientific integrity in research matters, respect for private life and GDPR requirements, related to research activities in a certain discipline.
- C3 Skills in using CAD-CAM -CAE systems
 - L.O.3.1 using computer-aided engineering programs to perform stress analyzes for engineering projects.
- C4 The ability to improve safety and comply with technical equipment safety standards
 - L.O.4.1 combine mechanical, electrical, electronic, software, and safety engineering to design motor vehicles such as trucks, vans, and automobiles.
- C.8 The ability to improve safety and comply with technical equipment safety standards
 - L.O.8.1 inspect equipment used during industrial activities, such as manufacturing or construction equipment, to ensure that the equipment complies with safety and environmental legislation.
 - L.O.8.3 to apply the basic security standards and technical standards specific to equipment to prevent risks related to the use of technical equipment at work.
- Ct1. Integration skills in specific workplace activities and technical skills, in conditions of autonomy and professional independence
 - L.O.1.1 to assume responsibility, to accept responsibility for their own decisions, showing willingness to work, respecting their commitments;

- L.O. 1.2 to show determination, making sustained efforts for success pursuing clear objectives, to make decisions choosing from several alternative possibilities;
- L.O.1.3 to show initiative, to be proactive,
- L.O.1.4 to apply scientific, technological and engineering knowledge, processing complex information, operating technological installations, tools or digital equipment;
- L.O.1.5 identify problems and make decisions to solve them;
- L.O.1.6 to comply with the rules, regulations and guidelines related to a certain field or sector and to apply them in his day-to-day activity;
- L.O.1.7 to plan activities, manage the calendar and resources to complete tasks in a timely manner.
- Ct2. Communication and teamwork skills
 - L.O.2.1 to carry out their work in a team;
 - L.O. 2.2 to address an audience, give a speech, make a presentation;
 - L.O.2.3 to moderate discussions between two or more people, including in situations such as workshops, conferences or online events;
 - L.O.2.4 to use simple digital tools and technologies to communicate, interact and collaborate with others.
 - L.O.2.5 to negotiate compromises, showing trust and managing the frustration of team members, to find compromise solutions, resolving conflicts;
 - L.O.2.6 to be able to lead others, coordinate a team;
 - L.O.2.7 be able to train other team members and organize information, objects and resources;
 - L.O.2.8 to motivate others, stimulating action;
 - L.O.2.9 to develop teams, managing time and delegating responsibilities;
- L.O.2.10 to create and maintain networks, promoting ideas, products and services.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Apply scientific knowledge to solve automotive engineering problems.
7.2 Specific objectives	 Practical skills for simulating the development processes of automotive products. Practical skills for working with integrated software packages for controlling
	 mechatronic systems of vehicles Practical skills of advanced simulation in the design of vehicles
	Development of modern software, innovative methods, principles and simulation procedures
	Development of methods for evaluating research and development projects
	Developing a management strategy using modern principles and methods

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Not the case			
8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Clutch model in Simulink	Presentations, examples,		
The suspension system in Simulink	experiments, research on		
Servo electro-hydraulic control in Simulink	the dynamic simulation of		
Development of a C ++ application for dynamic	the vehicle systems,	168	
simulation of a vehicle	virtual collision modeling	100	
Group projects	and testing, the sensory		
	and control systems of		
	the vehicles, virtual		

	instrumentation		
--	-----------------	--	--

Bibliography

- 1. Gîrbacia, F. Computer Aided Design and Graphics Programming. Editura Universită ii Transilvania, Braşov,
- 2. https://www.mathworks.com/examples/simulink/category/automotive-applications
- 3. https://www.computoolable.nl

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Through its content and through the elaboration of the thematic portfolio (the study), the masters acquire competences in accordance with the expectations of the epistemic community and of the producers in the car market. The analytical program is in line with similar fields addressed at universities in the country and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Course			0. 1.12
10.5 Seminar/ laboratory/	Completion of simulations in	Oral presentation	100%
project	Simulink		
	Development of the C ++		
	program		
	Involvement in practical		
	activities		
	Efficiency in verbal		
	communication		
	(presentation)		
	Completion of simulations in		
	Simulink		

10.6 Minimal performance standard

- Knowledge of Simulink and C++ fundamentals
- Realization of a Simulink simulation for engineering applications
- Realization of practical project
- The marks for project work must be at least 5.

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Prof.dr.ing. Ioan Călin ROȘCA,	Prof. dr. ing. Mihai DUGULEANĂ,
Dean	Head of Department
Prof. Ph. D. eng. Florin GÎRBACIA,	Prof. Ph. D. eng. Florin GÎRBACIA,

Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- 2) Study level choose from among: Bachelor / Master / Doctorat;
- 3) Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Mechanical Engineering
1.3 Department	Automotive and Transport Engineering
1.4 Field of study ¹⁾	Automotive Engineering
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Virtual Engineering in Automotive Design

2. Data about the course

2.1 Name of course			Uni	versity ethics				
2.2 Course conve	enor							
2.3 Seminar/ lab	orato	ry/ project	Sen	ior lecturer Simona Ş0	OICA,	PhD		
convenor								
2.4 Study year	П	2.5 Semester	IV	2.6 Evaluation type	V	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	1	out of which: 3.2 lecture	0	3.3 seminar/ laboratory/ project	1
3.4 Total number of hours in	14	out of which: 3.5 lecture	0	3.6 seminar/ laboratory/ project	14
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					10
Additional documentation in libraries, specialized electronic platforms, and field research					12
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					12
Tutorial					
Examinations				2	
Other activities					

3.7 Total number of hours of student activity	
3.8 Total number per semester	50
3.9 Number of credits ⁵⁾	2

4. Prerequisites (if applicable)

4.1 curriculum-related	
4.2 competences-related	Communication and academic writing

5. Conditions (if applicable)

5.1 for course development	
5.2 for seminar/ laboratory/	Room equipped with projector/TV, board and marker.
project development	

6. Specific competences and learning outcomes

Professional competences	
	Ct.1 Competences for integration into specific workplace activities, and technical competences, showing
	autonomy and professional independence
	Learning Outcomes. The graduate of the master study program is able to:
	L.O.1.1. assume responsibility for his/her decisions, show willingness to work, meet commitments;
	L.O.1.2. show determination, make decisions by identifying new opportunities;
	L.O.1.3. show initiative, be proactive;
	L.O.1.4. show self-reflection, thinki quickly and accept constructive criticism from colleagues or superiors;
	L.O.1.5 . analyze new issues as they arise, drawing on creative, innovative, analytical, holistic thinking;
	L.O.1.6. ensure customer orientation;
	L.O.1.7. identify problems and make decisions to solve them;
	L.O.1.8. comply with the rules, regulations and guidelines related to a specific field or sector and apply them in
	his/her daily work;
	Ct.2 Communication and teamwork skills
Ş	Learning Outcomes. The graduate of the master study program is able to:
Suce	L.O.2.1. carry out his/her work in a team;
)ete	L.O.2.2. address an audience, deliver visual presentation of data;
Шо	L.O.2.3. coordinate communication in a group, including situations such as workshops, conferences or online
sal c	events;
vers	L.O.2.4 use simple digital tools and technologies to communicate, interact and collaborate with others.
Transversal competences	L.O2.5 be able to lead others and coordinate a team;
Ļ	L.O2.6. be able to train other team members and organize information, objects and resources

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Ethics in scientific research
7.2 Specific objectives	Adapt and apply scientific writing rules in line with international standards.
	Managing professional writing

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
Bibliography			
8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number of hours	Remarks
8.2.1. Scientific discourse; Importance of ethics in	Problematization.	1	
scientific research.	Applications	I	
8.2.2. Elaboration of academic and scientific work:	Problematization.	2	
Documentation, Research. Scientific databases	Applications	2	
8.2.3. Elaboration of academic and scientific work:	Problematization.	2	
thesis, hypotheses, research methods	Applications	2	
8.2.4. Elaboration of academic and scientific work:	Problematization.	2	

Research methods in engineering	Applications		
8.2.5. Elaboration of academic and scientific work:	Problematization.	2	
Organizing texts, writing the abstract;	Applications	Z	
8.2.6. Elaboration of academic and scientific work:	tion of academic and scientific work: Problematization.		
Adapting internationally agreed styles;	Applications	2	
8.2.7. Writing technical/scientific texts (technical	Problematization.	2	
reports, instructions, procedures, user manuals);	Applications	2	

Bibliography

Alley, M. (2018) The craft of scientific writing. New York: Springer.

Bailey, S. (2003) *Academic Writing: A practical guide for students*. London: Routledge.

Barrass, R. (2002) *Scientists Must Write: A guide to better writing for scientists, engineers and students.* London: Routledge.

Laplante, P.A. (2012) Technical writing. Boca Raton: CRC Press Taylor & Francis Group.

Marder, M. P. (2011). Research methods for science. Cambridge: Cambridge University Press.

Thiel, D. V. (2014). Research methods for engineers. Cambridge: Cambridge University Press

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

- Academic and scientific rigor and honesty;
- Adapt technical writing skills to the future workplace

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course			
10.5 Seminar/ laboratory/	Applying seminar concepts	Written exam	100%
project			
40.5 Million 1. 1.			

10.6 Minimal performance standard

• Complying with the rules of scientific writing and obtaining the passing grade

This course outline was certified in the Department Board meeting on 08/09/2025 and approved in the Faculty Board meeting on 09/09/2025.

Professor Ioan-Călin ROȘCA, PhD	Professor Mihai DUGULEANĂ, PhD
	Head of Department
Dean	The state of Saparanana
	Senior lecturer Simona ȘOICA, PhD
	Holder of comings
	Holder of seminar

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: **CPC** (compulsory course)/ **EC** (elective course)/ **NCPC** (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).